
Math 241, Exam 3, Fall, 2020

Write everything on the blank paper that you brought. There should be

nothing on your desk except this exam, the blank paper that you brought,

and a pen or pencil. When you are finished, put the problems in order and

send a picture of your solutions to

kustin@math.sc.edu

The exam is worth 50 points. Each problem is worth 10 points. Please make

your work coherent, complete, and correct. Please CIRCLE your answer.

Please CHECK your answer whenever possible.

(1) Is there a plane that contains the lines











x = −t+ 5

y = 2t+ 1

z = −t− 1

and











x = −5t− 4

y = −2t+ 1

z = 3t+ 2?

If there is, then find its equation. Please make sure that your answer

is correct.

The points P0 = (5, 1,−1) and P1 = (4, 3,−2) are on the first line. The

point Q = (−4, 1, 2) is on the second line. We find the plane which

contains P0, P1, and Q. (It is NOT guaranteed ahead of time that there

is a plane that contains the two lines; however, if such a plane exists,

then this plane must contain P0, P1, and Q. It is absolutely required that

we check that the plane we find does contain both lines.)

We calculate

−−→
P0P1 ×

−−→
P0Q =

∣

∣

∣

∣

∣

∣

−→
iii

−→
jjj

−→
kkk

−1 2 −1
−9 0 3

∣

∣

∣

∣

∣

∣

= 6
−→
iii + 12

−→
jjj + 18

−→
kkk .

The plane through (5, 1,−1) perpendicular to 6
−→
iii + 12

−→
jjj + 18

−→
kkk is

6(x− 5) + 12(z − 1) + 18(z + 1) = 0.

Divide each side by 6 to obtain

(x− 5) + 2(y − 1) + 3(z + 1) = 0

or

x+ 2y + 3z = 4.

The line on the left lies on our plane because

(−t+ 5) + 2(2t+ 1) + 3(−t− 1) = 4.X
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The line the right lies on our plane because

(−5t− 4) + 2(−2t+ 1) + 3(3t+ 2) = 4.X

Both lines lie on the plane x+ 2y + 3z = 4.

(2) An object moves in three space. At time t, the position vector of

the object is −→rrr (t) = e2t
−→
iii + (2t2 + 3)

−→
jjj + t3

−→
kkk . What are parametric

equations for the line tangent to the path of the object at t = 1?

We compute −→rrr ′(t) = 2e2t
−→
iii +4t

−→
jjj +3t2

−→
kkk . The tangent line of interest is

parallel to −→rrr ′(1) = 2e2
−→
iii + 4

−→
jjj + 3

−→
kkk . The position vector of the object

at t = 1 is −→rrr (1) = e2
−→
iii + 5

−→
jjj + 1

−→
kkk . The line through (e2, 5, 1) parallel

to 2e2
−→
iii + 4

−→
jjj + 3

−→
kkk is











x = 2e2t+ e2

y = 4t+ 5

z = 3t+ 1.

(3) An object moves in three space. At time t, the position vector of the

object is −→rrr (t) = t
−→
iii + t3/2

−→
jjj . How far does the object travel between

t = 0 and t = 4?

The length of the curve is

∫ 4

0

|−→rrr ′(t)|dt =

∫ 4

0

|
−→
iii + (3/2)t1/2

−→
jjj |dt =

∫ 4

0

√

12 + ((3/2)t1/2)2dt

=

∫ 4

0

√

1 + (9/4)tdt = (2/3)(4/9)(1 + (9/4)t)3/2|40 = (8/27)(103/2 − 1)

(4) Find the local maximum points, local minimum points, and saddle

points of f(x, y) = x2y + 4xy − 2y2.

The derivatives are

fx = 2xy + 4y, fy = x2 + 4x− 4y,

fxx = 2y, fxy = 2x+ 4, and fyy = −4.

Observe that the equation fx = 0 can be factored to yield 2y(x+ 2) = 0.

There are two different ways this equation can be satisfied: either y = 0
or x = −2.

When y = 0, then fy = 0 becomes x2 + 4x = 0; hence x(x + 4) = 0 and

x = 0 or x = −4. So far, we have identified two critical points; namely

(0, 0) and (−4, 0).

2



When x = −2, then fy = 0 becomes 4− 8− 4y = 0; hence, −4 = 4y and

y = −1.

Thus f has exactly three critical points, namely (0, 0), (−4, 0), and

(−2,−1).

We apply the second derivative test at each critical point.

At (0, 0), the Hessian H|(0,0) is equal to

H|(0,0) = (fxxfyy − f 2
xy)|(0,0) =

(

(2y)(−4)− (2x+ 4)2
)
∣

∣

∣

(0,0)
= −16 < 0.

Thus,

(0, 0, f(0, 0)) is a saddle point.

At (−4, 0), the Hessian H|(−4,0) is equal to

H|(−4,0) = (fxxfyy−f 2
xy)|(−4,0) =

(

(2y)(−4)− (2x+ 4)2
)
∣

∣

∣

(−4,0)
= −16 < 0.

Thus,

(−4, 0, f(−4, 0)) is a saddle point.

At (−2,−1), the Hessian H|(−2,−1) is equal to

H|(−2,−1) = (fxxfyy − f 2
xy)|(−2,−1) =

(

(2y)(−4)− (2x+ 4)2
)
∣

∣

∣

(−2,−1)

=
(

(−2)(−4)− (2(−2) + 4)2
)∣

∣

∣

(−4,0)
= 8 > 0.

We see also that fxx(−2,−1) = 2y|(−2,−1) = −2 < 0. We conclude that

(−2,−1, f(−2,−1)) is a local maximum.

(5) Find the absolute extreme points of the function f(x, y) = x+ y−xy,

which is defined on the closed triangle with vertices at (0, 0), (0, 2),
and (4, 0).

We put a picture of the domain on the last page. We see that the bound-

ary has three pieces. Eventually, we will look at f restricted to each of

these three pieces. Eventually, also, we will look at f evaluated at each

of the end points of the boundary.

First we look for interior points where both partial derivatives vanish.

We compute fx = 1− y and fy = 1− x. If fx = 0 and fy = 0 then x = 1
and y = 1. We will study (1, 1) in our final step.

Now we look at f restricted to the vertical line x = 0, with 0 ≤ y ≤ 2.

This function is

f |x=0 = y.
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We see that d
dy
(f |x=0) = 1, which is never zero. Thus, the extreme points

of f |x=0 occur at the end points (0, 0) and (0, 2). We already know to

study these points in our final step.

Now we look at f restricted to the horizontal line y = 0, with 0 ≤ x ≤ 4.

This function is

f |y=0 = x.

We see that d
dx
(f |y=0) = 1, which is never zero. Thus, the extreme points

of f |y=0 occur at the end points (0, 0) and (4, 0). We already know to

study these points in our final step.

Now we look at f restricted to the slanting line y = −1
2
x + 2, with

0 ≤ x ≤ 4. This function is

f |y=−
1

2
x+2 = x+ (−1

2
x+ 2)− x(−1

2
x+ 2) = x2

2
− 3

2
x+ 2.

We compute
d
dx
(f |slanting line) = x− 3

2
.

Thus, d
dx
(f |slanting line) = 0 when x = 3

2
and y = 2− 3

4
= 5

4
.

It is time for the final step. The extreme points of f on our domain occur

at one of the points (0, 0), (0, 2), (4, 0), (1, 1), or (3
2
, 5
4
). We evaluate f at

these 5 points; the largest answer is the maximum. The smallest answer

is the minimum.

f(0, 0) = 0

f(0, 2) = 2

f(4, 0) = 4

f(1, 1) = 1

f(3
2
, 5
4
) = 7

8

We conclude that (4, 0, 4) is the maximum of f on our domain

and (0, 0, 0) is the minimum of f on our domain.
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