

PRINT Your Name: _____

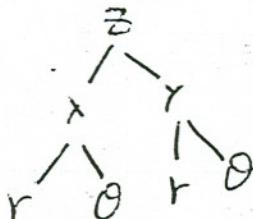
There are 10 problems on 5 pages. Each problem is worth 10 points. SHOW your work. **CIRCLE** your answer. **NO CALCULATORS!** CHECK your answer, whenever possible.

1. Let $f(x, y) = e^{xy} \sin x + 2xy^2$. Find $\vec{\nabla} f$.

$$\vec{\nabla} f = (e^{xy} \cos x + y e^{xy} \sin x + 2y^2) \vec{i} + (x e^{xy} \sin x + 4xy) \vec{j}$$

2. Find the equation of the plane tangent to $z^2 = 3x^2 + 6y^2$ at $(1, -1, 3)$.

$$0 = 3x^2 + 6y^2 - z^2$$


$\vec{\nabla}$ \perp level sets!

$$\vec{\nabla} = 6x \vec{i} + 12y \vec{j} - 2z \vec{k}$$

$$\vec{\nabla}|_{(1, -1, 3)} = 6\vec{i} - 12\vec{j} - 6\vec{k}$$

$$6(x-1) - 12(y+1) - 6(z-3) = 0$$

3. Suppose that $z = f(x, y)$, and x and y are written polar coordinates (that is, $x = r \cos \theta$ and $y = r \sin \theta$). Express $\frac{\partial z}{\partial r}$ in terms of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r}$$

$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \cos \theta + \frac{\partial z}{\partial y} \sin \theta$$