

Math 241, Exam 3, Spring, 2019

Write everything on the blank paper provided. **You should KEEP this piece of paper.** If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it – I will still grade your exam.

The exam is worth 50 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please **CIRCLE** your answer. Please **CHECK** your answer whenever possible.

The solutions will be posted later today.

The exams will be returned on Thursday.

No Calculators, Cell phones, computers, notes, etc.

(1) **Describe and graph $y^2 - x^2 - z^2 = 1$ in three-space. What is the name of this object?**

See the picture page.

(2) **Find the length of the curve $y = \frac{2}{3}x^{3/2}$ for $0 \leq x \leq 8$.**

The curve is parameterized by $\vec{r}(t) = t \vec{i} + \frac{2}{3}t^{3/2} \vec{j}$ for $0 \leq t \leq 8$. The length of the curve is

$$\int_0^8 |\vec{r}'(t)| dt = \int_0^8 |\vec{i} + t^{1/2} \vec{j}| dt = \int_0^8 \sqrt{1+t} dt = \frac{2}{3}(1+t)^{3/2} \Big|_0^8 = \boxed{\frac{2}{3}(27-1)}.$$

(3) **Find the equation of the plane tangent to $z = x^2 + y^2$ at the point where $x = 3$ and $y = 4$.**

When $x = 3$ and $y = 4$, then $z = 25$. Gradients are perpendicular to level sets. Move the z to the other side. We want the equation of the plane through the point $(3, 4, 25)$ and perpendicular to the vector

$$\vec{\nabla}(x^2 + y^2 - z)|_{(3,4,25)} = (2x \vec{i} + 2y \vec{j} - \vec{k})|_{(3,4,25)} = 6 \vec{i} + 8 \vec{j} - \vec{k}.$$

The answer is

$$\boxed{6(x-3) + 8(y-4) - (z-25) = 0.}$$

(4) **Find the absolute maximum and absolute minimum of**

$$f(x, y) = 2 + 2x + 4y - x^2 - y^2$$

on the triangular region in the first quadrant bounded by the lines $x = 0$, $y = 0$, and $y = 9 - x$.

See the picture page for a picture of the domain.

We find all points in the interior where both partials vanish. Observe that $f_x = 2 - 2x$ and $f_y = 4 - 2y$. Both partials vanish at $(1, 2)$. This point is in the interior.

We find all points on $x = 0$ with $0 \leq y \leq 9$ where the derivative of $f(0, y) = 2 + 4y - y^2$ is zero. The derivative is $4 - 2y$. This is zero when $y = 2$. We must study $(0, 2)$.

We find all points on $y = 0$ with $0 \leq x \leq 9$ where the derivative of $f(x, 0) = 2 + 2x - x^2$ is zero. The derivative is $2 - 2x$. The derivative is zero when $x = 1$. We must study $(1, 0)$.

We find all points on $y = 9 - x$ with $0 \leq x \leq 9$ where the derivative of $f(x, 9 - x) = 2 + 2x + 4(9 - x) - x^2 - (9 - x)^2$ is zero. The derivative is $2 - 4 - 2x + 2(9 - x) = 16 - 4x$. The derivative is zero when $x = 4$. We must study $(4, 5)$.

We must also study the end points of the boundary; namely, $(0, 0)$, $(0, 9)$, and $(9, 0)$.

We plug all 7 candidates into f :

$$\begin{aligned} f(1, 2) &= 2 + 2 + 8 - 1 - 4 = 7 \\ f(0, 2) &= 2 + 8 - 4 = 6 \\ f(1, 0) &= 2 + 2 - 1 = 3 \\ f(4, 5) &= 2 + 8 + 20 - 16 - 25 = -11 \\ f(0, 0) &= 2 \\ f(0, 9) &= 2 + 36 - 81 = -43 \\ f(9, 0) &= 2 + 18 - 81 = -61 \end{aligned}$$

The maximum point of f on the given domain is $(1, 2, 7)$.
 The minimum point of f on the given domain is $(9, 0, -61)$.

(5) Find the volume of the solid whose base in the xy -plane is the region bounded by $x + y = 2$ and $x + 4 = y^2$ and whose top is $z = x + 5$.

Find the intersection of $x + y = 2$ and $x + 4 = y^2$:

$$2 - y + 4 = y^2$$

$$0 = y^2 + y - 6$$

$$0 = (y + 3)(y - 2)$$

$$y = -3 \quad \text{or} \quad y = 2$$

The intersection points are $(5, -3)$ and $(0, 2)$.

Look at the picture page. We fill up the base using horizontal lines. Fix y with $-3 \leq y \leq 2$. For each fixed y , x goes from $y^2 - 4$ to $2 - y$. The volume is

$$\begin{aligned} \int \int_{\text{base}} \text{top } dA &= \int_{-3}^2 \int_{y^2-4}^{2-y} (x + 5) dx dy = \int_{-3}^2 (x^2/2 + 5x) \Big|_{y^2-4}^{2-y} dy \\ &= \int_{-3}^2 \frac{(2-y)^2}{2} + 5(2-y) - \left(\frac{(y^2-4)^2}{2} + 5(y^2-4) \right) dy \\ &= \int_{-3}^2 \frac{4-4y+y^2}{2} + 5(2-y) - \left(\frac{y^4-8y^2+16}{2} + 5(y^2-4) \right) dy \\ &= \left[\frac{4y-2y^2+y^3/3}{2} + 5(2y-y^2/2) - \left(\frac{y^5/5-8y^3/3+16y}{2} + 5(y^3/3-4y) \right) \right] \Big|_{-3}^2 \\ &= \left\{ \begin{aligned} &\left[\frac{4(2)-2(2)^2+(2)^3/3}{2} + 5(2(2)-(2)^2/2) - \left(\frac{(2)^5/5-8(2)^3/3+16(2)}{2} + 5((2)^3/3-4(2)) \right) \right] \\ &- \left[\frac{4(-3)-2(-3)^2+(-3)^3/3}{2} + 5(2(-3)-(-3)^2/2) - \left(\frac{(-3)^5/5-8(-3)^3/3+16(-3)}{2} + 5((-3)^3/3-4(-3)) \right) \right] \end{aligned} \right\} \end{aligned}$$