

Math 241, Exam 3, Fall, 2018

Write everything on the blank paper provided. **YOU SHOULD KEEP THIS PIECE OF PAPER.** If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it – I will still grade your exam.

The exam is worth 50 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please **CIRCLE** your answer. Please **CHECK** your answer whenever possible.

The solutions will be posted later today.

The exams will be returned on Tuesday.

No Calculators, Cell phones, computers, notes, etc.

(1) **Find all local minima, local maxima and saddle points for the function $f(x, y) = x^2 + 4y^2 - 6x + 8y - 15$.**

We compute $\frac{\partial f}{\partial x} = 2x - 6$ and $\frac{\partial f}{\partial y} = 8y + 8$. Both partial derivatives are zero at the point $(x, y) = (3, -1)$. We apply the second derivative test at that point. We compute $\frac{\partial^2 f}{\partial x^2} = 2$, $\frac{\partial^2 f}{\partial y \partial x} = 0$, and $\frac{\partial^2 f}{\partial y^2} = 8$.

Observe that

$$\left. \left(\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial y \partial x} \right)^2 \right) \right|_{(x,y)=(3,-1)} = 16,$$

which is positive. Thus, $(3, -1, f(3, 1))$ is not a saddle point; it is either a local maximum or a local minimum. Also

$$\left. \frac{\partial^2 f}{\partial x^2} \right|_{(x,y)=(3,-1)} = 2,$$

which is positive. We conclude that

(3, -1, f(3, 1)) is a local minimum.

(2) **Find the absolute maximum and the absolute minimum values of**

$$f(x, y) = 3xy - 6x - 3y + 7$$

on the triangular region with vertices $(0, 0)$, $(3, 0)$, and $(0, 5)$.

We compute $\frac{\partial f}{\partial x} = 3y - 6$ and $\frac{\partial f}{\partial y} = 3x - 3$. Both partial derivatives are zero at the point $(x, y) = (1, 2)$. This interior critical point might be an absolute extreme point.

We look at the restriction of f to the line $y = 0$ with $0 \leq x \leq 3$.

$$f|_{y=0}(x) = -6x + 7$$

and the derivative is -6 which is never zero. So the absolute extreme points of the restriction of f to the line $y = 0$ with $0 \leq x \leq 3$ occur at the end points.

We look at the restriction of f to the line $x = 0$ with $0 \leq y \leq 5$.

$$f|_{x=0}(y) = -3y + 7$$

and the derivative is -3 which is never zero. So the absolute extreme points of the restriction of f to the line $x = 0$ with $0 \leq y \leq 5$ occur at the end points.

The line which connects $(3, 0)$ to $(0, 5)$ is $y = -\frac{5}{3}x + 5$. We look at the restriction of f to the line $y = -\frac{5}{3}x + 5$ with $0 \leq x \leq 3$.

$$f|_{\text{top boundary}}(x) = 3x(-\frac{5}{3}x+5) - 6x - 3(-\frac{5}{3}x+5) + 7 = -5x^2 + 15x - 6x + 5x - 15 + 7$$

The derivative is $-10x + 15 - 6 + 5$. The derivative is zero when $-10x + 14 = 0$; that is when $x = 7/5$ and $y = 8/3$.

The extreme points of f on our domain occur at $(0, 0)$, $(3, 0)$, $(0, 5)$, or $(7/5, 8/3)$. We plug these points into f :

$f(0, 0) = 7$,	absolute maximum
$f(3, 0) = -18 + 7 = -11$	absolute minimum
$f(0, 5) = -15 + 7 = -8$	
$f(7/5, 8/3) = 56/5 - 42/5 - 8 + 7 = 9/5$	
$f(1, 2) = 6 - 6 - 6 + 7 = 1$	

The absolute minimum of f on our domain occurs at $(3, 0, -11)$.
The absolute maximum of f on our domain occurs at $(0, 0, 7)$.

(3) **Describe, graph, and name $x^2 + y^2 - z^2 = 1$ in 3-space.**

See the picture page.

(4) **Suppose $\vec{r}'(t) = 2t \vec{i} + 3t^2 \vec{j}$ and $\vec{r}(0) = \vec{i} - \vec{j}$. Find $\vec{r}(t)$.**

Integrate to see that $\vec{r}(t) = t^2 \vec{i} + t^3 \vec{j} + \vec{c}$ for some constant vector \vec{c} . Plug in $t = 0$ to see that $\vec{i} - \vec{j} = \vec{r}(0) = \vec{c}$. Thus

$$\vec{r}(t) = (t^2 + 1) \vec{i} + (t^3 - 1) \vec{j}.$$

(5) Let $f(x, y) = 4x^3y^2$. Find the directional derivative of f at the point $P = (2, 1)$ in the direction of $\vec{a} = 4\vec{i} - 3\vec{j}$.

The unit vector which points in the direction of \vec{a} is $u = \frac{1}{5}(4\vec{i} - 3\vec{j})$.

$$\begin{aligned}
 D_{\vec{u}} f|_P &= (\vec{\nabla} f)|_P \cdot \vec{u} = (12x^2y^2\vec{i} + 8x^3y\vec{j})|_{(2,1)} \cdot \frac{1}{5}(4\vec{i} - 3\vec{j}) \\
 &= (48\vec{i} + 64\vec{j}) \cdot \frac{1}{5}(4\vec{i} - 3\vec{j}) = \frac{1}{5}(4(48) - 3(64)) = \boxed{0}.
 \end{aligned}$$