

9. (There is no partial credit for this problem. Make sure your answer is correct.) Let $\vec{a} = 1\vec{i} + 2\vec{j} - 3\vec{k}$ and $\vec{b} = 2\vec{i} - 2\vec{j} + 3\vec{k}$. Find vectors \vec{u} and \vec{v} with $\vec{b} = \vec{u} + \vec{v}$, \vec{u} parallel to \vec{a} , and \vec{v} perpendicular to \vec{a} .

$$\vec{u} = \text{proj}_{\vec{a}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a} = \frac{2 - 4 - 9}{1 + 4 + 9} \vec{a} = \frac{-11}{14} (1\vec{i} + 2\vec{j} - 3\vec{k}) = \vec{u}$$

$$\vec{v} = \vec{b} - \vec{u} = \frac{1}{14} (28\vec{i} - 28\vec{j} + 42\vec{k} + 11\vec{i} + 22\vec{j} - 33\vec{k})$$

$$\vec{v} = \frac{1}{14} (39\vec{i} - 6\vec{j} + 9\vec{k})$$

$$\vec{u} + \vec{v} = \vec{b} \checkmark$$

$$\vec{u} \parallel \vec{a} \checkmark$$

$$\vec{v} \perp \vec{a} \checkmark$$

10. Let $f(x, y) = x \cos y + (\ln x) \sin(xy)$. Find f_x .

$$f_x = \cos y + (\ln x)y \cos(xy) + \frac{\sin xy}{x}$$