

Math 241, Exam 2, Fall, 2018

Write everything on the blank paper provided. **YOU SHOULD KEEP THIS PIECE OF PAPER.** If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it – I will still grade your exam.

The exam is worth 50 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please **CIRCLE** your answer. Please **CHECK** your answer whenever possible.

The solutions will be posted later today.

The exams will be returned on Thursday.

No Calculators, Cell phones, computers, notes, etc.

(1) **Describe, graph, and name** $9x^2 + 4y^2 + z^2 = 36$ **in 3-space.**

See the picture page.

(2) **Do the lines**

$$\begin{cases} x = 5 + t \\ y = 6 + t \\ z = 7 + t \end{cases} \quad \text{and} \quad \begin{cases} x = 7 - 2s \\ y = -7 + 3s \\ z = s \end{cases}$$

intersect? If so, where. If not, why not?

We look for times t_0 and s_0 with the property that

$$x(t_0) = x(s_0), \quad y(t_0) = y(s_0), \quad z(t_0) = z(s_0)$$

where the left x, y, z refer to the first line and the second x, y, z refer to the second line. This is a system of three equations in two unknowns. It may or may not have a solution. At any rate, we try to solve

$$\begin{cases} 5 + t_0 = 7 - 2s_0 \\ 6 + t_0 = -7 + 3s_0 \\ 7 + t_0 = s_0. \end{cases}$$

We try to solve

$$\begin{cases} 5 + t_0 = 7 - 2(7 + t_0) \\ 6 + t_0 = -7 + 3(7 + t_0) \\ 7 + t_0 = s_0. \end{cases}$$

$$\begin{cases} 3t_0 = -12 \\ -8 = 2t_0 \\ 7 + t_0 = s_0. \end{cases}$$

Thus, $t_0 = -4$ and $s_0 = 3$.

The intersection point is $(1, 2, 3)$.

(3) An object is fired from the origin in the xy -plane at an angle α from the positive x -axis with an initial speed of v_0 . The acceleration of the object is $-g \vec{j}$. How high is the object when its x -coordinate is R ?

Let $\vec{r}(t) = x(t) \vec{i} + y(t) \vec{j}$ be the position vector of the object at time t . We are told that $\vec{r}''(t) = -g \vec{j}$, $\vec{r}'(0) = v_0 \cos \alpha \vec{i} + v_0 \sin \alpha \vec{j}$, and $\vec{r}(0) = 0 \vec{i} + 0 \vec{j}$. We integrate to learn $\vec{r}'(t) = -gt \vec{j} + \vec{c}_1$. Plug in $t = 0$ to learn

$$v_0 \cos \alpha \vec{i} + v_0 \sin \alpha \vec{j} = \vec{r}'(0) = \vec{c}_1.$$

So,

$$\vec{r}'(t) = v_0 \cos \alpha \vec{i} + (v_0 \sin \alpha - gt) \vec{j}.$$

Integrate again to learn

$$\vec{r}(t) = (v_0 \cos \alpha)t \vec{i} + ((v_0 \sin \alpha)t - gt^2/2) \vec{j} + \vec{c}_2.$$

Plug in $t = 0$ to learn

$$0 = \vec{r}(0) = \vec{c}_2.$$

Thus,

$$\vec{r}(t) = (v_0 \cos \alpha)t \vec{i} + ((v_0 \sin \alpha)t - gt^2/2) \vec{j}.$$

The x -coordinate of the object is R when

$$(v_0 \cos \alpha)t = R,$$

so $t = R/(v_0 \cos \alpha)$. When the x -coordinate is R , the y coordinate is

$$\begin{aligned} y(R/(v_0 \cos \alpha)) &= (v_0 \sin \alpha)(R/(v_0 \cos \alpha)) - g \left(\frac{(R/(v_0 \cos \alpha))^2}{2} \right) \\ &= \boxed{R \tan \alpha - \frac{gR^2}{2v_0^2 \cos^2 \alpha}}. \end{aligned}$$

(4) **Find the point on the curve**

$$\vec{r}(t) = (5 \sin t) \vec{i} + (5 \cos t) \vec{j} + 12t \vec{k}$$

at a distance 26π units along the curve from the point $(0, 5, 0)$ in the direction of increasing arc length.

Observe that $\vec{r}(0) = (0, 5, 0)$. We first look for t_0 so that the length of the curve from $t = 0$ to $t = t_0$ is 26π . That is,

$$\begin{aligned} 26\pi &= \int_0^{t_0} |\vec{r}'(t)| dt = \int_0^{t_0} |(5 \cos t) \vec{i} + (-5 \sin t) \vec{j} + 12 \vec{k}| dt \\ &= \int_0^{t_0} \sqrt{25 \cos^2 t + 25 \sin^2 t + 144} dt = \int_0^{t_0} \sqrt{25(\cos^2 t + \sin^2 t) + 144} dt \\ &= \int_0^{t_0} \sqrt{25 + 144} dt = \int_0^{t_0} \sqrt{169} dt = \int_0^{t_0} 13 dt = 13t_0. \end{aligned}$$

Solve $26\pi = 13t_0$ to see that $2\pi = t_0$. The point on the curve a distance 26π away from $(0, 5, 0)$ along the curve has position vector

$$\vec{r}(2\pi) = (5 \sin 2\pi) \vec{i} + (5 \cos 2\pi) \vec{j} + 12(2\pi) \vec{k} = 0 \vec{i} + 5 \vec{j} + 24\pi \vec{k}.$$

The corresponding point on the curve is

$$(0, 5, 24\pi).$$

(5) **Express $\vec{v} = 4\vec{i} + \vec{j}$ as the sum of a vector parallel to**

$$\vec{b} = -2\vec{i} + 3\vec{j}$$

plus a vector perpendicular to \vec{b} . Check your answer. Make sure it is correct.

Observe that $\vec{v} = \text{proj}_{\vec{b}} \vec{v} + (\vec{v} - \text{proj}_{\vec{b}} \vec{v})$ with $\text{proj}_{\vec{b}} \vec{v}$ parallel to \vec{b} and $(\vec{v} - \text{proj}_{\vec{b}} \vec{v})$ perpendicular to \vec{b} .

We compute

$$\begin{aligned} \text{proj}_{\vec{b}} \vec{v} &= \frac{\vec{b} \cdot \vec{v}}{\vec{b} \cdot \vec{b}} \vec{b} = \frac{(-2\vec{i} + 3\vec{j}) \cdot (4\vec{i} + \vec{j})}{(-2\vec{i} + 3\vec{j}) \cdot (-2\vec{i} + 3\vec{j})} (-2\vec{i} + 3\vec{j}) \\ &= \frac{-5}{13} (-2\vec{i} + 3\vec{j}). \end{aligned}$$

It follows that

$$(\vec{v} - \text{proj}_{\vec{b}} \vec{v}) = \frac{52}{13} \vec{i} + \frac{13}{13} \vec{j} - \left(\frac{10}{13} \vec{i} - \frac{15}{13} \vec{j}\right) = \frac{42}{13} \vec{i} + \frac{28}{13} \vec{j}.$$

Thus $\vec{v} = \frac{-5}{13}(-2\vec{i} + 3\vec{j}) + \left(\frac{42}{13}\vec{i} + \frac{28}{13}\vec{j}\right)$ with $\frac{-5}{13}(-2\vec{i} + 3\vec{j})$ parallel to \vec{b} and $\left(\frac{42}{13}\vec{i} + \frac{28}{13}\vec{j}\right)$ perpendicular to \vec{b} .