

Write everything on the blank paper provided. **You should KEEP this piece of paper.** If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it – I will still grade your exam.

The exam is worth 50 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please **CIRCLE** your answer. Please **CHECK** your answer whenever possible.

The solutions will be posted later today.

The exams will be returned on Thursday.

No Calculators, Cell phones, computers, notes, etc.

(1) Express $\vec{v} = 4\vec{i} + \vec{j}$ as the sum of a vector parallel to $\vec{b} = -2\vec{i} + 3\vec{j}$ plus a vector perpendicular to \vec{b} . Check your answer. Make sure it is correct.

Observe that $\vec{v} = \text{proj}_{\vec{b}} \vec{v} + (\vec{v} - \text{proj}_{\vec{b}} \vec{v})$ with $\text{proj}_{\vec{b}} \vec{v}$ parallel to \vec{b} and $(\vec{v} - \text{proj}_{\vec{b}} \vec{v})$ perpendicular to \vec{b} .

We compute

$$\begin{aligned} \text{proj}_{\vec{b}} \vec{v} &= \frac{\vec{b} \cdot \vec{v}}{\vec{b} \cdot \vec{b}} \vec{b} = \frac{(-2\vec{i} + 3\vec{j}) \cdot (4\vec{i} + \vec{j})}{(-2\vec{i} + 3\vec{j}) \cdot (-2\vec{i} + 3\vec{j})} (-2\vec{i} + 3\vec{j}) \\ &= \frac{-5}{13} (-2\vec{i} + 3\vec{j}). \end{aligned}$$

It follows that

$$(\vec{v} - \text{proj}_{\vec{b}} \vec{v}) = \frac{52}{13} \vec{i} + \frac{13}{13} \vec{j} - \left(\frac{10}{13} \vec{i} - \frac{15}{13} \vec{j} \right) = \frac{42}{13} \vec{i} + \frac{28}{13} \vec{j}.$$

Thus $\vec{v} = \frac{-5}{13} (-2\vec{i} + 3\vec{j}) + \left(\frac{42}{13} \vec{i} + \frac{28}{13} \vec{j} \right)$ with $\frac{-5}{13} (-2\vec{i} + 3\vec{j})$ parallel to \vec{b} and $\left(\frac{42}{13} \vec{i} + \frac{28}{13} \vec{j} \right)$ perpendicular to \vec{b} .

(2) Find the point on the line

$$x = 2 + 3t, \quad y = 3 - t, \quad z = 1 + 2t$$

which is nearest to the origin.

Let $O = (0, 0, 0)$, $P = (2, 3, 1)$, and $Q = (a, b, c)$ be the point on the line which is closest to O . Observe that P is on the line and $\vec{v} = 3\vec{i} - \vec{j} + 2\vec{k}$ is parallel to the line. Look at the picture to see that $\vec{PQ} = \text{proj}_{\vec{v}} \vec{PO}$. It follows that

$$(a - 2)\vec{i} + (b - 3)\vec{j} + (c - 1)\vec{k} = \vec{PQ} = \frac{\vec{v} \cdot \vec{PQ}}{\vec{v} \cdot \vec{v}} \vec{v}$$

$$\begin{aligned}
&= \frac{(3\vec{i} - \vec{j} + 2\vec{k}) \cdot (-2\vec{i} - 3\vec{j} - \vec{k})}{(3\vec{i} - \vec{j} + 2\vec{k}) \cdot (3\vec{i} - \vec{j} + 2\vec{k})} (3\vec{i} - \vec{j} + 2\vec{k}) \\
&= \frac{(-6 + 3 - 2)}{9 + 1 + 4} (3\vec{i} - \vec{j} + 2\vec{k}) = \frac{-5}{14} (3\vec{i} - \vec{j} + 2\vec{k})
\end{aligned}$$

The point Q is $Q = (2 + \frac{-15}{14}, 3 + \frac{5}{14}, 1 - \frac{10}{14}) = \left(\frac{13}{14}, \frac{47}{14}, \frac{4}{14}\right)$.

Check. First of all, Q is the point on the line when $t = -5/14$. Furthermore, the vector \overrightarrow{OQ} is $\frac{13}{14}\vec{i} + \frac{47}{14}\vec{j} + \frac{4}{14}\vec{k}$ and this vector is perpendicular to \vec{v} because $(\frac{13}{14}\vec{i} + \frac{47}{14}\vec{j} + \frac{4}{14}\vec{k}) \cdot (3\vec{i} - \vec{j} + 2\vec{k}) = \frac{39 - 47 + 8}{14} = 0$

(3) **Graph and describe the set of points in 3-space which satisfy both of the equations**

$$z = 4 \quad \text{and} \quad (x - 1)^2 + (y - 2)^2 + (z - 3)^2 = 16.$$

See the picture.

(4) **Let $f(x, y) = 3x^2 \sin(3y) + 7y \cos(2x)$. Find $\frac{\partial f}{\partial x}$.**

$$\boxed{\frac{\partial f}{\partial x} = 6x \sin(3y) - 14y \sin(2x).}$$

(5) **An object is fired from the origin in the xy -plane at an angle α from the positive x -axis with an initial speed of v_0 . The acceleration of the object is $-g\vec{j}$. How high is the object when its x -coordinate is R ?**

Let $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j}$ be the position vector of the object at time t . We are told that $\vec{r}''(t) = -g\vec{j}$, $\vec{r}'(0) = v_0 \cos \alpha \vec{i} + v_0 \sin \alpha \vec{j}$, and $\vec{r}(0) = 0\vec{i} + 0\vec{j}$. We integrate to learn $\vec{r}'(t) = -gt\vec{j} + \vec{c}_1$. Plug in $t = 0$ to learn

$$v_0 \cos \alpha \vec{i} + v_0 \sin \alpha \vec{j} = \vec{r}'(0) = \vec{c}_1.$$

So,

$$\vec{r}'(t) = v_0 \cos \alpha \vec{i} + (v_0 \sin \alpha - gt)\vec{j}.$$

Integrate again to learn

$$\vec{r}(t) = (v_0 \cos \alpha)t\vec{i} + ((v_0 \sin \alpha)t - gt^2/2)\vec{j} + \vec{c}_2.$$

Plug in $t = 0$ to learn

$$0 = \vec{r}(0) = \vec{c}_2.$$

Thus,

$$\vec{r}(t) = (v_0 \cos \alpha)t\vec{i} + ((v_0 \sin \alpha)t - gt^2/2)\vec{j}.$$

The x -coordinate of the object is R when

$$(v_0 \cos \alpha)t = R,$$

so $t = R/(v_0 \cos \alpha)$. When the x -coordinate is R , the y coordinate is

$$y(R/(v_0 \cos \alpha)) = (v_0 \sin \alpha)(R/(v_0 \cos \alpha)) - g \left(\frac{(R/(v_0 \cos \alpha))^2}{2} \right)$$

$$= \boxed{R \tan \alpha - \frac{gR^2}{2v_0^2 \cos^2 \alpha}}.$$