

7. (There is no partial credit for this problem. Make sure your answer is correct.) Let $\vec{a} = 2\vec{i} + 3\vec{j} + \vec{k}$ and $\vec{b} = 2\vec{i} - \vec{j} + 4\vec{k}$. Find vectors \vec{u} and \vec{v} with $\vec{b} = \vec{u} + \vec{v}$, \vec{u} parallel to \vec{a} , and \vec{v} perpendicular to \vec{a} .

$$\vec{u} = \text{proj}_{\vec{a}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a} = \frac{4+3+4}{4+9+1} \vec{a}$$

$$\vec{u} = \frac{5}{14} (2\vec{i} + 3\vec{j} + \vec{k})$$

$$\vec{v} = \vec{b} - \vec{u} = \frac{1}{14} (18\vec{i} - 29\vec{j} + 51\vec{k})$$

Verify $\vec{u} \parallel \vec{a} \checkmark$

$$\vec{u} + \vec{v} = \vec{b} \checkmark$$

$$\vec{v} \cdot \vec{a} = 0 \checkmark$$

8. Find a point which is the distance 2 from $x + 2y + 2z = 1$.

We want any (x_0, y_0, z_0) so let

$$\frac{|x_0 + 2y_0 + 2z_0 - 1|}{\sqrt{1+4+4}} = 2$$

so we want any (x_0, y_0, z_0) with $x_0 + 2y_0 + 2z_0 - 1 = 6$

any (x_0, y_0, z_0) with $x_0 + 2y_0 + 2z_0 = 7$

so $(7, 0, 0)$ is an answer

$(1, 3, 0)$ is an answer

etc.