


10. The vectors \vec{v} and \vec{w} live in the xy -plane. The vector \vec{v} has a magnitude of 60 and points in the direction $\frac{\pi}{12}$ radians. The vector \vec{w} has a magnitude of 80 and points in the direction $\frac{4\pi}{7}$ radians. How long is $\vec{v} + \vec{w}$? (Angles are measured counterclockwise starting at the positive x -axis. You may leave "cos" and/or "sin" in your answer.)

$$\vec{v} = 60 \cos\left(\frac{\pi}{12}\right) \hat{i} + 60 \sin\left(\frac{\pi}{12}\right) \hat{j}$$

$$\vec{w} = 80 \cos\left(\frac{4\pi}{7}\right) \hat{i} + 80 \sin\left(\frac{4\pi}{7}\right) \hat{j}$$

$$\vec{v} + \vec{w} = (60 \cos\left(\frac{\pi}{12}\right) + 80 \cos\left(\frac{4\pi}{7}\right)) \hat{i} + (60 \sin\left(\frac{\pi}{12}\right) + 80 \sin\left(\frac{4\pi}{7}\right)) \hat{j}$$

$$\|\vec{v} + \vec{w}\| = \sqrt{(60 \cos\left(\frac{\pi}{12}\right) + 80 \cos\left(\frac{4\pi}{7}\right))^2 + (60 \sin\left(\frac{\pi}{12}\right) + 80 \sin\left(\frac{4\pi}{7}\right))^2}$$

