

Math 241, Exam 1, Fall 2019

Write everything on the blank paper provided. **You should KEEP this piece of paper.** If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it – I will still grade your exam.

The exam is worth 50 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please **CIRCLE** your answer. Please **CHECK** your answer whenever possible.

The solutions will be posted later today.

The exams will be returned on Monday.

No Calculators, Cell phones, computers, notes, etc.

(1) Find a system of parametric equations for the line through the points $P_1 = (1, 2, 3)$ and $P_2 = (7, 11, -1)$. Check your answer. Make sure it is correct.

Observe that $\overrightarrow{P_1P_2} = 6\vec{i} + 9\vec{j} - 4\vec{k}$. The line through $(1, 2, 3)$ parallel to $6\vec{i} + 9\vec{j} - 4\vec{k}$ is

$$x - 1 = 6t, \quad y - 2 = 9t, \quad z - 3 = -4t.$$

In other words,

$$\boxed{x = 1 + 6t, \quad y = 2 + 9t, \quad z = 3 - 4t.}$$

Check. If an object is travelling along our proposed answer, at time $t = 0$, the object is standing at $(1, 2, 3)$, which is P_1 . At $t = 1$, the object is standing at $(7, 11, -1)$, which is P_2 .

(2) Find an equation for the plane through the points $P_1 = (1, 2, 3)$, $P_2 = (-1, 0, 2)$, and $P_3 = (3, 1, 5)$. Check your answer. Make sure it is correct.

The vector $\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3}$ is perpendicular to the desired plane. We compute

$$\begin{aligned} \overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3} &= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & -2 & -1 \\ 2 & -1 & 2 \end{vmatrix} = \begin{vmatrix} -2 & -1 \\ 2 & 2 \end{vmatrix} \vec{i} - \begin{vmatrix} -2 & -1 \\ 2 & 2 \end{vmatrix} \vec{j} + \begin{vmatrix} -2 & -2 \\ 2 & -1 \end{vmatrix} \vec{k} \\ &= (-4 - 1)\vec{i} - (-4 + 2)\vec{j} + (2 + 4)\vec{k} = -5\vec{i} + 2\vec{j} + 6\vec{k}. \end{aligned}$$

The plane through the point $(1, 2, 3)$ perpendicular to the vector $-5\vec{i} + 2\vec{j} + 6\vec{k}$ is

$$-5(x - 1) + 2(y - 2) + 6(z - 3) = 0,$$

which is the same as

$$-5x + 2y + 6z = 17.$$

Check. Plug $P_1 = (1, 2, 3)$ into the proposed answer:

$$-5(1) + 2(2) + 6(3) = 17 \checkmark.$$

Plug $P_2 = (-1, 0, 2)$ into the proposed answer:

$$-5(-1) + 2(0) + 6(2) = 17 \checkmark.$$

Plug $P_3 = (3, 1, 5)$ into the proposed answer:

$$-5(3) + 2(1) + 6(5) = 17 \checkmark.$$

(3) Express $\vec{v} = \vec{i} + 2\vec{j}$ as the sum of a vector parallel to $\vec{b} = 3\vec{i} + 4\vec{j}$ and a vector orthogonal to \vec{b} . Check your answer. Make sure it is correct.

Observe that

$$\begin{aligned} \vec{v} &= \text{proj}_{\vec{b}} \vec{v} + (\vec{v} - \text{proj}_{\vec{b}} \vec{v}) \\ &= \frac{\vec{v} \cdot \vec{b}}{\vec{b} \cdot \vec{b}} \vec{b} + (\vec{v} - \frac{\vec{v} \cdot \vec{b}}{\vec{b} \cdot \vec{b}} \vec{b}) \\ &= \frac{11}{25}(3\vec{i} + 4\vec{j}) + \frac{1}{25}((25\vec{i} + 50\vec{j}) - (33\vec{i} + 44\vec{j})) \\ &= \frac{11}{25}(3\vec{i} + 4\vec{j}) + \frac{1}{25}(-8\vec{i} + 6\vec{j}). \end{aligned}$$

Thus,

\vec{v} is the sum of $\frac{11}{25}(3\vec{i} + 4\vec{j})$ plus $\frac{1}{25}(-8\vec{i} + 6\vec{j})$ with $\frac{11}{25}(3\vec{i} + 4\vec{j})$ parallel to \vec{b} and $\frac{1}{25}(-8\vec{i} + 6\vec{j})$ perpendicular to \vec{b} .

Check. It is clear that

$$\frac{11}{25}(3\vec{i} + 4\vec{j}) + \frac{1}{25}(-8\vec{i} + 6\vec{j}) = \vec{i} + 2\vec{j},$$

which is \vec{v} .

It is clear that $\frac{11}{25}(3\vec{i} + 4\vec{j})$ is parallel to \vec{b} .

We compute

$$3\vec{i} + 4\vec{j} \cdot \left(\frac{1}{25}(-8\vec{i} + 6\vec{j}) \right) = 0$$

to see that $\frac{1}{25}(-8\vec{i} + 6\vec{j})$ is perpendicular to \vec{b} .

(4) **Find the point on the plane $5x + 3y - 7z = 73$ which is closest to the point $(1, 2, 3)$.**

The line which passes through $(1, 2, 3)$ and is perpendicular to the plane is

$$x - 1 = 5t, \quad y - 2 = 3t, \quad z - 3 = -7t.$$

This line hits the plane when

$$5(5t + 1) + 3(3t + 2) - 7(-7t + 3) = 73$$

$$(25 + 9 + 49)t + 5 + 6 - 21 = 73$$

$$83t = 83.$$

The line and the plane intersect when $t = 1$. The point of intersection is $(6, 5, -4)$.

The point on $5x + 3y - 7z = 73$ closest to $(1, 2, 3)$ is $(6, 5, -4)$

Check. The point $(6, 5, -4)$ is on the plane because $5(6) + 3(5) - 7(-4) = 73$. Furthermore, the vector which connects $(1, 2, 3)$ to $(6, 5, -4)$ is $5\vec{i} + 3\vec{j} - 7\vec{k}$, which is perpendicular to the plane $5x + 3y - 7z = 73$.

(5) **Write $4x^2 + 9y^2 + 36z^2 - 8x - 36y + 216z + 328 = 0$ in the form**

$$\frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} + \frac{(z - z_0)^2}{c^2} = 1,$$

where x_0, y_0, z_0, a, b , and c are numbers.

The given equation has the same solutions as

$$4(x^2 - 2x + \boxed{1}) + 9(y^2 - 4y + \boxed{4}) + 36(z^2 + 6z + \boxed{9}) = -328 + 4\boxed{1} + 9\boxed{4} + 36\boxed{9}$$

$$4(x - 1)^2 + 9(y - 2)^2 + 36(z + 3)^2 = 36$$

$$\frac{(x - 1)^2}{9} + \frac{(y - 2)^2}{4} + \frac{(z + 3)^2}{1} = 1$$

Check. The proposed answer is in the right form. Just multiply it back out to see that it is correct. The proposed answer is equivalent to

$$4(x - 1)^2 + 9(y - 2)^2 + 36(z + 3)^2 = 36$$

$$4(x^2 - 2x + 1) + 9(y^2 - 4y + 4) + 36(z^2 + 6z + 9) = 36$$

$$4x^2 - 8x + 4 + 9y^2 - 36y + 36 + 36z^2 + 216z + 36(9) = 36$$

$$4x^2 - 8x + 9y^2 - 36y + 36z^2 + 216z + 4 + 36 + 9(36) - 36 = 0$$

The number $4 + 36 + 9(36) - 36$ is equal to 328. ✓