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1. Introductory remarks about the course.

Here are some preliminary remarks about the course.

(1) My name is Professor Kustin.

(2) Be sure to look at the class website often. If you don’t know the address, send
an e-mail to me at kustin@math.sc.edu

(3) Quiz 1 on Wednesday, Aug. 28 is one of the assigned HW problems from 12.1
or 12.2.

(4) There is a list of assigned HW on my website.

(5) The HW is from
Thomas’ Calculus: Early Transcendentals by George B. Thomas, Jr. Fifteenth
Edition. The book was revised by Hass, Heil, Bogacki, and Weir. Be sure to
get access to these problems. I can help, if necessary.

(6) There will be an Exam or Quiz essentially every two or three classes. The
exams and quizzes will be given at the end of class. When you finish your quiz
or exam, take a picture of your solution for your records and give me your
answers. | will send my comments back by way of e-mail. I will return your
paper when I next see you.

(7) If you miss an exam or quiz or do poorly on an exam or quiz; don’t worry about
it. There will be plenty more chances for you to demonstrate competence. Be
sure to learn how to do missed or wrong problem correctly. (Talk to me about
it; figure it out on your own; or use some other source.) I’ll surely ask about it
again.

(8) I have posted a typed version of the class lectures on my website. I encourage
you to study them. In particular, if you miss a lecture, then I strongly encour-
age you to study the lecture notes. I will revise the typed notes as the class
progresses.

(9) Ask about the things you don’t understand.

e Ask in class.

e Ask during office hours.

e Send me an e-mail.

e Catch me before class.

e Ask until you are satisfied.

(10) I want want you to learn the material. (If I am not happy with your work, I will
complain vigorously.) I want you to earn a good grade. If you mess something
up on a quiz or exam, I will surely ask you about it again. Get it right the second
time (or the third time). The grading scheme is structured so that the early miss
will not harm your final grade if you eventually figure it out. See “How your
final grade will be calculated” at the end of the syllabus for full details.)
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What we do. In Math 241 we do calculus in 3-space. We study curves, surfaces,
and vector fields.
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In a vector field, a directed line segment is put on each point in the plane (or
in 3-space). A vector field might describe a fluid that is flowing or a force. The
direction of the line segment is the direction a fluid is flowing at that point (or a
force is acting at that point) and the length of the line segment is speed of the fluid
flow (or the magnitude of the force). We do “max-min” problems for z = f(x,y).
We find areas, volumes, and masses for regions in the plane or 3-space.
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2. Section 12.1. Introduction to 3-space.

Most of our course takes place in 3-space. Mathematicians make the yz-plane
be the plane of the blackboard and have the x-axis come into the classroom. One
might wonder why Mathematicians do this. The reason is that in first semester
calculus one studies (the graph of) y = f(x) so the answer (which is y) is the height
of the point (x, f(x)) (on the graph) above the domain (which is the x-axis). In third
semester calculus one studies (the graph of) z = f(x,y). Once again the answer
(which is z) is the height of the point (x,y, f(x,y)) (on the graph) above the point in
the domain (which is the xy-plane). If you can use the convention I am using, that
is great. If you are already used to some other convention, I do not want to mess
with your head, use the convention the convention that works for you; but do make
sure to label the coordinate axes on any picture you draw for me!

On the next page, I drew the coordinate axes and plotted a few points in 3-
space.
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The equations of geometric objects in 3-space. What equation or equations is
satisfied by each of the following geometric objects, but not satisfied by anything
else in 3-space?

The xy-plane.

The yz-plane

The plane parallel to the yz-plane, but one unit in front of it.

The plane parallel to the xy-plane, but one unit above it.

The x-axis.

The y-axis.

NN A LD =

The lines in the xy-plane that are parallel to the x-axis but are 2 units away from
the x-axis.
8. The circle of radius 1 with center the origin in the yz-plane.

. The sphere of radius 1 with center the origin.
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Maybe we should think about the distance between two points in 3-space before
we write down the equation of a sphere.

Fact 2.1. If P| = (x1,y1,21) and P, = (x2,y2,22) are arbitrary points in 3-space,
then the distance between Py and P> is

\/(XZ—X1)2+ (y2—=y1)?+(z2—21)*

Proof. Use the Pythagorean Theorem to see that the distance from (x1,y1,2;) to
(x2,2,21) i8 v/(x2 —x1)% + (y2 — y1)2. (You know the Pythagorean Theorem. Even
the Scarecrow in the Wizard of Oz knows it once he gets a brain.) Use the Pythagorean
Theorem again to find the distance from (x1,y;,z1) to (x2,y2,22). I put a nice picture
on the next page. U

Fact 2.2. If Py = (x0,Y0,20) is a point in 3-space r is a positive number, then the

equation of the sphere with center Py and radius r is
(x—=x0)%+ (y —y0)* + (z—20)* = r*.

Proof. Let P = (x,y,z) be an arbitrary point in 3-space. The point P is on our sphere

if and only if the distance from P to Py equals r. Thus, the point P is on our sphere

if and only

(x—x0)* 4+ (y—y0)* + (z—20)* = 1.
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Describe, graph, and name the set of all points in 3-space which satisfy
10. x=—1and z=0,
11. x¥*+y*=4and z = -2,
12. > +y*+72 =4,
13. y=x>+4.

15
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3. Section 12.2. Vectors.

A vector is a directed line segment. Two vectors are equal if they have the same
length and the same direction. N
The vector of length 1 in the direction of the positive x-axis is called i ;
the vector of length 1 in the direction of the positive y-axis is called l> ;
the vector of length 1 in the direction of the positive z-axis is called k .

Example 3.1. The vector from the point (1,2) to the point (3,5) is denoted
(1,2)(3,5).

This vector is equal to 2? + 37. There is a pretty picture of this vector on the
next page. The vector 2 i + 3 j may also be written as (2,3). Please use ( , )
for vectors and ( , ) for points. Vectors are different than points. You can move
a vector without damaging it; but you can’t move a point. The vector 2i +3 j
has length v/22+32 = /13. (The is just the Pythagorean Theorem. A vector is
a line segment. One can use the Pythagorean Theorem to find the length of a line
segment.) If V is the name of a vector, then \7] is the length of V.

Example 3.2. Write the vector V=27 +3 J in the form 07, where % is a unit

vector and c is a constant. (A unit vector is a vector of length one.) We already saw
4>

that | V| = v/13. It follows that — is a unit vector and

V13
2 = 3 =
— . J
V=VI3|—=i+—= ,
(\/13 V13 ])
2 7, 3 7. . .
where == i + —= j 1s a unit vector and /13 is a constant.
V13 V13
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4. Section 12.3. Dot product.

- — — — — —
Definition4.1. If V =a, i +a> j +ask and W =b, i +by j + b3k are vec-
tors, then the dot product of V and W is the number

? . W = a1by +arby + azbs.

Fact 4.2. If Y and W are vectors, then
VW = |V||W]cos,

where O is the angle between Voand W. (There is a picture of the angle between v
and W on the next page.)

Fact 4.2 is a quick consequence of the Law of Cosines. See, for example,
https://en.wikipedia.org/wiki/Law_of_cosines
Fact 4.2 explains why the dot product is important. We use it to find the angle

between two vectors. In particular, it gives a very easy to decide when two vectors
are perpendicular!

\

Example 4.3. Find the angle between (2,3)(5,6) and (2,3)(1,7). There is a picture
on the next page. Let Vv = (2,3)(5,6; and W = (2,3)(1,7 ). Observe that

- = s
V=3i+3j and W=—i+47].

It follows that
VW = |V||W]cos(8),
where 0 is the angle between V and W. Thus,
BT 4+37) (=T +47) =T 437 |- 7 +47|cosb
~3412=3v2V17cos 0

arccos ———— = 0.

3v2V/17
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Question 4.4. How does one use dot product to see that two vectors are perpendic-
ular?

Answer. Two vectors are perpendicular if and only if their dot product is zero.

Examples 4.5. (a) The vectors 7 and ? are perpendicular and _1> . ? =0.
e - ; 1 .

(b) The vectors v = i +m j and W=+ - J are perpendicular for all non-
zero m. Of course, every line that contains V is a line with slope m and every
line that contains W is a line with slope _71 You have known for many years
that if the slope of two lines multiply to —1, then the lines are perpendicular.
The notion of dot product is a sophisticated version of this elementary fact about
the slopes of perpendicular lines. There are two cool things about dot product.
It works in 3-space as well as two-space! It also can be used to tell the angle
between two lines even if the lines are not perpendicular.

_>
Vector projection. Often one is given two vectors @ and b and oge wants to
write @ as the sg)n of two vectors ¢ and , where 7 is parallel to b and 7 is
perpendicular to b . (There is a good picture on the next page.)
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For example if @ is a force and b> is the direction of motion, then ¢ is the
component of the force that is in the direction of motion and d is the component
of the force that is perpendicular to the direction of motion.

Similarly, if @ is an acceleration vector and b> is the direction of motion, then
¢ is the component of acceleration that is in the direction of motion and d is the
component of acceleration that is perpendicular to the direction of motion.

The vector € is called the projection of @ onto b This vector is usually de-

noted

pr0j3> a.
The formula for vector projection is
= _dbp
projy = i

Please notice:

ab

(a) The expressmn is a number and &= 7 b b is a vector.

(b) The vector 7 7 pI'OJ—> a.

(c) This is the correct answer because
(i) The vector proj = b is obviously parallel to b
(i1) The sum

proj—> a+ (7 — proj5> 7)

is obviously equal to .
(iii) The vector @ — pI‘O_]—> d is perpendicular to b This statement is not
as obvious; but it is the point of the process. We check the statement by

computing
. - o e N Sl N
(7—pr0177>-b—<7—ﬁ; ) b-d-b-ZLp.p

_>
—4d-b-a-b =0
(d) The calculation (ciii) tells you how to figure out the formula for vector projec-
tion if you have forgotten it. We know that proj7 d is equal to ¢ b for some
number c. We need only figure out the value of c. Welli>we have to choose ¢ so
that “the left over vector” @ —c b is perpendicular to b . We need only choose
¢ so that
- =
(d —cb)-b =0.
We want
- = =
d-b—cb-b=0.
We see that ¢ must be 5= 7 b . We conclude that pI‘O_]—> ‘@ must be

7=
proj =4 Z
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- = —
Example 4.6. Express V =1i —2j as the sum of a vector parallel to b =
e re
3i +4 j and a vector orthogonal to b .

We compute
. T - = - 4
proj ¥ = B2~ (T +47) - 4747
We also compute o
(V —projp V) =+( i —¢J).
Thus
— Y re g s
V=(—3i-3j)+Ei-%)),
37 47 -
where (—z i —z j ) is parallel to b
8 677 7
and (5 i — 2 j ) is perpendicular to b .
- 4= — - 4= —
Notice that (— %1 —‘3‘])1sparallelt0bbecause( %1 —%‘])mequalto(%)b;
2 4 8T 6T T
(—3i-3)+Ei-8))=1i-2j=V;
and e e N
Gi-87)Gi+4))=5-%=0
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5. Section 12.4. Cross product.

- — —
If @ and b are vectors ing@, then @ x b is a vector in R3. (One calls “dxb”
the cross product of d and b J)
Here are three methods for computing cross product.

Method 1. The cross product of two vectors in R3 can be determined by the follow-
ing ing)rmﬂioné - = = i
(i) i xj=k, jxk=1i, and k x i = j (The first picture
on the next page shows this multiplication table.)
(i1) The cross product of any vector with itself is zero.

(iii) Cross product is anti-commutative; in other words,
VXW=-Wx7V,

for all vectors ¥ and W.
(iv) Cross product distributes over addition.

Method 2. The cross product V x W is a vector. The length of Vx W is equal
to the area of the parallelogram determined by V and W. (The second
picture on the next page shows the parallelogram determined by V and
W?.) The cross product V xWis perpendicular to both V and W and is
obtained using the right hand rule. The right hand rule says “place your
right hand in the plane of V and W with your fingers curling from v
to W, then your thumb points in the direction of VX W (The third
picture on the neXLPage sgows the right hand rule.)

— — — —
Method3. If @ =ay i +a» j +ask and b =by i +by j +b3k, then
T 7%
- _a2a3—.>_a1 az| =2 |la1 a5
dxb=a a a3| = \p, by by bs b by K-
by by bs

The rectangular arrays are called matrices. The big vertical lines tell us
to take the determinant of the matrix. I took the determinant by “ex-
panding across the first row”. The determinant of the 3 X 3 matrix is
equal to the entry in row 1 column 1 times the determinant of the matrix
obtained by deleting row 1 and column 1 of the big matrix minus' the
entry in row 1 column 2 times the determinant of the matrix obtained by
deleting row 1 and column 2 of the big matrix plus the entry in row 1
column 3 times the determinant of the matrix obtained by deleting row
1 and column 3 of the big matrix. The determinant of the 2 X 2 matrix

cd

I'This minus is very important. If you have computed a cross product and it does not seem to be
working correctly, then there is a very good chance that you forgot this minus sign.

is ad — bc.
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_>

Examples 5.1. (a) Notice that i and_> J cEtermme a parallelogram of area one;

that the right hand rule shows that i X j points in the direction of k and that
- = —
the right hand rule shows that j x i points in the direction of — k .

(b) Notice that ] and k _(>1€term1ne a parallelogram o_f> area one; that the right hand
rule shows that J_> x k points in the direction oi i ; and that the right hand rule
shows that k x j gomts in the direction of — i .

(c) Notice that k and i determine a parallelogram of area one; that the right hand

I I o - .
rule shows tgat k x i points in the direction og J ; and that the right hand rule
shows that i X k pomts in the d1rect1on of — ]

(d) Let7— i +2] +3k and b =— l +2] Compute7 X b (and verify
that your answer is perpendicular to @ and b ).

%
LT T %
dxb=|1 2 3
1 2 0
2 3= |1 3= |1 22
ol T ‘10’*‘—12"‘
%
_| 67 =37 +4K|

Check. Observe that @ - our answer is
- = - = =
(i +2j +3k)-(—6i —3j+4k)=—-6—-6+12=0+

- )
and b -our answer is

I
—N—
5L

Hi“i
X
&.\L:/
+
A
<
X
<l

+ T
2

1
w

_>
= —6i —3j+4K.

Of course, this is the same answer as the one we got in (d). In practice, most of
the time, one uses Method 3 to compute cross product. It merely provides an
organized way to compute cross product using the rules of Method 1.
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6. Section 12.5. Lines and planes.

Section 12.5 contains a large amount of material.

A. We find the equation of a plane.

B. We find the equations of a line.

C. Given a point P and a plane. We find the point on the plane which is closest to
P.

D. Given a point P and a line ¢. We find the point on ¢ closest to P.

6.A. The equation of a plane. What geometric data describes a plane?

One plausible answer is three point determine a plane (unless the 3 points happen
to live on a line). This is a very good answer, except there is a more efficient answer.
This data requires nine numbers. (We have to give three coordinates for each point.)

If this is the best we could do, then we would have a formula with nine constants in
it. Ugh!

A second answer is if Py is an arbitrary point and ﬁ is an arbitrary vector, then
there is exactly one plane that contains Py and is perpendicular to ﬁ See the pic-
ture on the next page.
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We conclude that El)e plane through Py = (xo,y0,z0) perpendicular to the vector
- =
N=Ai +B j +Ck is the set of all points P = (x,y,z) with

PPLN.

In other words, A(x —x9) +B(y —yo) +¢(z—2z0) = 0.

Conclusion 6.1. The equation of ﬁz}e plane through Py = (x0,Y0,20) perpendicular
- =
to the vector N = A i +Bj +Ck isA(x—x9)+B(y—yo)+c(z—z0) =0.

Question 6.2. Find the equation of the plane through Py = (1,2,3) perpendicular
N o7 37 45T

toN=2i —-3j+5k.

Answer. Use Conclusion 6.1 to see that the answer is

2(x—1)=3(y—2)+5(z—3) =0.

Question 6.3. What vector is perpendicular to the plane 6x — 9y + 10z = 28?

Answer. Use Conclusion 6.1 to see that the answer is

%
67 97 +10k.

Question 6.4. Find the equation of the plane through Py = (2,3,4), P, = (3,4,5),
and P; = (1,6,8).

— - .

Answer. The vectors P; P, and P P; both lie on the plane we are supposed to find.
Thus, P1 P> x P P3 is perpendicular to the plane we are supposed to find. (Look at
the picture on the next page, if necessary.) We compute

T
—_— — 1 1|—» 1 1|—= 1 1|
PP xPPs=]1 1 1 :‘3 4‘1—’_1 4‘]—}—’_1 S‘k
1 3 4
I
=7 5] +4k.

The plane through P; = (2,3,4) perpendicular 75 ? + 4? is
(x—2)—5(y—3)+4(z—4)=0.
’x—5y+4z: 3. ‘
CHECK: Plug P, = (2,3,4) into the proposed answer:
2—-15+16=3v

Plug P, = (3,4,5) into the proposed answer:
3—-20420=3v

Plug P; = (1,6,8) into the proposed answer:
1-30+32=3v
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6.B. The equations of a line.
Question. What geometric data describes a line?

Answer. 1. One correct answer is “Two points determine a line”.
2. Another correct answer is “A point on the line and a vector parallel to the line
determine a line.”

We use answer the second set of data. (Of course, the first set of data can be
easily transformed into the second set of data.)

Question. What are the parametric equations for the line through Py = (xo,y0,20)
— - s
and parallelto v.=ai +bj +ck?

Answer. Look at the picture! The point P = (x,y,z) is on the line if and only if
PP =1V

for some number ¢.



The eglUgtions of & [the

CM\S&WV ~+L€’ l"""ﬁ “f‘lwafz% the Poist
F (Ko Yo, o) %44 parelle] to Ho LecTom
>

94”6422

’\/’“CIL Fb




MATH 241, FALL 2024 35
The point P = (x,y,z) is on the line if and only if
P =1V

for some number 7.
The point P = (x,y,z) is on the line if and only if

— — — — - =
(x—x0) i +(y—y0)Jj +(z—z0)k =t(ai +bj +ck)
for some number z.

Fact 6 S. The line through the point Py = (x0,y0,20) and parallel to the vector
v—al +b] —l—ck is

X =Xxo9+at
y =yo+bt
z=2Zz0+ct.

Example. Flnciyarametrlc equations for the line through Py = (1,0,0) parallel to
the vectorv= i +2j.
This is the line

x=1+¢
y=0+2¢
z=0.

There is a picture on the next page. (This particular line lives on the xy-plane. The
parallel vector i +2 j conveys the information that the line has slope 2.)

Question. Find parametric equations for the line through P = (1,2,3) and Q =
(8,9,11).

Answer. The line through P = (1,2,3) which is parallel to

PO=(1,23)8,9,110=77 +77 +8%

is

x=1+4+7¢
y=2+7Tt
7 =73+ 8t

Check: If one walks on the line, then at 7 = 0 one is standing on (1,2,3) and at
t = 1 one is standing on (8,9,11).

Question. Give a vector that is parallel to the line

x=6+4¢
y=11-7t
z=12+¢
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e I
Answer. The vector vV =4 i —7 J + k is parallel to the line

x=06+4t
y=11-7t
=12+t

6.C. Find the point on the plane Ax+ By + Cz = D which is closest to the point
Py = (x1,y1,21)-
Example. 6.8 Find the point Q{ on x+ 3y + 2z = 4 which is closest to the point
Py = (1,2,3) and check your answer.
Step 1. We find the line through P; = (1,2,3) which is parallel to
N=T7+37+2%
Step 2. The point Q; is the intersection of the line from Step 1 and the plane.
We carry out Step 1. The line is

x=1+¢
y=2+3t
z7=3+4+2¢

We carry out Step 2. We first find when the line and the plane intersect. (In my
mind, something is walking along the line. The parametric equations for the line
tell where the object is at each moment. We first find the moment that puts the
object on the plane.) The object is on the plane when

(14+1)+3(243¢)+2(3+2t) =4.

This simplifies to
1+6+6+(1+9+4)=4

t=—
14

At time t = T—f the object stands on the plane and the position of the object is

So
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We verify that Qg is on the plane by plugging (15—4, ﬁ, %) intox+3y+2z=4:

5 1 24 56
= — 2 — )| =—=4.v
14+3(14)+ (14) 14

R
We verify that QP; is perpenicular to the plane. Well,

\

GF (3 LAWY 9 20 By 9o o
=\ 1) \1w1a14) "1 T Tt T\

which is perpendicular yo the plane, as expected.

6.D. Given a line / and a point P, find the point on / closest to P;.

Example. Find the point on the line

x=72t
(=qy=1+2
7="72t

which is closest to the point Py = (1,2,3).2
Step 1. We find the plane through P; = (1,2,3) which is perpendicular to the line

x=2t
y=1+2¢
7 =2t.

Step 2. The answer is the intersection of the original line and the plane of Step 1.
(See the picture at the end of the problem.)

We carry out Step 1. The given line is parallel to v =2i +2 j +2k; is the
plane that we want to create is perpendicular to V and passes through P = (1,2,3).
Our plane is 2(x — 1) +2(y —2) +2(z — 3) = 0, which can be rewritten as
xX+y+z=06.

We carry out Step 2. The line

x=2t
y=1+2¢
z7=2t

and the plane x +y +z = 12 meet, when
20+ (142t)4+2t =6
6t =5
. 5
=z

ZWe did a different point in class. Both problems (the one done here and the one done in class)
are done correctly.
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If an object moves along the line, then at time t = % the position of the object is

5 8 5
x=§, y:§, and 1:5'
The point on
x=2t
y=1+2¢
z=72t.

closestto Py = (1,2,3) is

585
3’3’3

Check. We see that (3,3, 3) is on the line

x=2t
y=1+2¢
7="2t

when t = %. We also see that the vector

1,2,3)( 5,55 ) =3 ~-Jj—zk
( 7y ) (35 33 3 1 + 3 J 3
is perpendicular to the line because

= = 4 A S
Gi+ijf-4K)-@i+2j+2k)=0.

585) 2= 2= 4—
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7. Section 12.6. Surfaces in three space.

We focus on two situations.
A. A variable is missing.
B. The equation has degree two.

7.A. A variable is missing.

Example 7.1. To graph z = x* in three-space. Graph z = x? in the xz-plane. Then
graph the same picture for each y. The graph is called a cylinder. (If we want to
emphasize that the cross sections are parabolas we call it a parabolic cylinder.) The

picture is on the next page.
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7.B. The equation has degree two. To graph a quadric surface (that is the equa-
tion is quadratic), see what the graph looks like when x =0, y =0, z =0, and
maybe x equals constant, y equals constant, z equals constant, then connect the
pieces. (When you set x = 0 you are taking the cross section of the surface which
lives in the yz plane. The hope is that you can figure out what the surface looks like
by carefully studying a few cross sections.)

Example 7.2. Graph x? 4+ 4y? = z? in three space.
When x = 0 the equation becomes 4y*> = z> and the graph is two lines. One of
the lines is 2y = z and the other line is —2y = z.

When y = 0 the graph is two lines; namely x = z together with y = z.

When z = 0 the equation is x> +4y?> = 0. The number x? is zero or higher. The
number 4y2 is zero or higher. If two numbers, each of which is zero or higher, add
to zero, then both numbers are zero. So the cross section of the surface x* + 4y2 =72
that lives in the xy-plane is just the origin. This is legal, but not very informative.
Maybe we should look at the cross section of the surface when z is the non-zero
constant ¢. Well, x> +4y? = ¢? is an ellipse. (If the 4 weren’t there then the equation
would be a circle. An ellipse is a circle that is stretched a little in one direction.

The rest of the story is on the next page.
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Example 7.3. Graph z = x> 4 y? in three space. The cross section when y = 0 is
the parabola z = x. The cross section when x = 0 is the parabola z = y*. The cross
section when z = 0 is a point. (Again, x> and y? are both zero or higher. If x
plus y? equals zero, then x and y are both zero.) If z is a positive constant c, then
¢ = x> +y? is a circle. There is no graph when z is negative.

The rest of the story is on the next page.
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Example 7.4. Graph z> + x> —y? = | in three space.

The cross section when x = 0 is the hyperbola z> — y> = 1. (Notice that (y,2) =
(0,1) is on the graph, but when z = 0, there is no graph.)

The cross section when z = 0 is the hyperbola x> — y> = 1. (Notice that (x,y) =
(1,0) is on the graph, but when x = 0, there is no graph.)

The cross section when y = 0 is the circle 22 +x* = 1.

The rest of the story is on the next page.

The surface in three space is called a “hyperboloid of one sheet”. The phrase
“one sheet” is an old fashioned way of saying that the surface consists of one piece.
A little later we will study a hyperboloid which comes in two pieces, we call it a
hyperboloid of two sheets.
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Example 7.5. Graph z = y*> — x? in three space.
The cross section when x = 0 is the parabola z = y”.
The cross section when y = 0 is the parabola z = —x.
The cross section when z = 0 is 0 = y? —x2. This is two lines.> Everything on
y = x satisfies 0 = y*> — x%. Also everything on y = —x satisfies 0 = y*> — x.
At any rate two lines is probably not a good representative of the cross sections

2

in this direction. If z is a positive constant c, then ¢ = y> —x? is a hyperbola. In this

hyperbola, (x,y) can be (0,++/c), but y can not be zero. If 7 is a negative constant,
then ¢ = y? — x? or |c| = x> — y?, which is also a hyperbola. This hyperbola contains
the points (x,y) = (++/|c|,0), but x can not be zero.

The resulting surface drawn on the next page. It is called a hyperbolic paraboloid
or a “saddle surface”. This is an important surface for us because the origin turns
out to be a “critical point” (when we are applying the techniques of section 14.7 to
find local extreme points). If we study the cross section of the surface that is in the
yz-plane, then we would say that the origin is certainly a local minimum. However
if we focus on the cross section in the xz plane, then we would say that the origin is
certainly a local maximum. It turns out that the origin is neither a local minimum or
a local maximum of this surface. The origin is called a saddle point of the surface.

The rest of the story is on the next page.

3Maybe you want to move x2 to the other side (so x*> = y?) and then take the square root of both
sides (so x =y or x = —y). The other way to look at 0 = y* —x? is to factor 0 = (y —x)(y +x). Ifa
product of two numbers is zero, then at least one of the two numbers is zero. Again we obtain x =y
orx = —y.



G"V‘C{PL‘ Z\ ':7/’7’{--")(”K fh T}ﬂ%’q srece

4 t V%‘r
. - N 2oyZ /
\A/’lf\@y\ X-;;iC/ j? g [ Sq FQ}%(/:’O/‘? >y

Y =0, Z::-)(Q [Sq Fql«LQIQ 94‘

N

W hen

whta 270 Y=RO¥ ]

ve (ot C

\ULCP\ 73 h?;;f;“ff

;‘/f’evﬂbalfc Patg boloid

/



MATH 241, FALL 2024 51

Example 7.6. Graph z> — x> —y? = | in three space.

The cross section when x = 0 is the hyperbola z> — y> = 1. (Notice that (y,2) =
(0,1) is on the graph, but z can not be zero.)

The cross section when y = 0 is the hyperbola 72 — x> = 1. (Notice that (x,z) =
(0,1) is on the graph, but z can not be zero.)

When z = 0, there is no graph. Indeed, there is no graph for —1 <z < 1.

When z =1 or z = —1, the graph is a point.

When z is a constant ¢ with 1 < ¢ or ¢ < —1, then the graph is the circle ¢Z — x> —
y? = 1, which is the same as ¢ — 1 = x> +y?.

The graph of z> — x> —y? = 1 in three space is called “a hyperboloid of two
sheets”. “Of two sheets is an old fashioned way of saying, “in two pieces”.

Please see the next page.
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Example 7.7. Graph ’572 + ygz + % = 1 in three space.
The cross section when x = 0 is the ellipse %2 + % =1.
The cross section when y = 0 is the ellipse %22 + % =1.
The cross section when z = 0 is the ellipse % + % =1.

The graph of the surface in 3-space is called an ellipsoid.

53
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8. Section 13.1. Curves in three space.

One usually describes a curve parametrically:

x=x(t)
y=y(t)
z=2(1)

Example 8.1. Describe the circle x> 4 y? = 1 parametrically.

There are all kinds of clumsy things one can do, but the easiest way to describe a
point on a circle is to describe the coordinates of a point in terms of angle. (Please
look at the picture on the next page.) Trigonometry was cooked up to parameterize
circles.

y = sint,

X = cost .
{ . with —oo <t < oo,

Example 8.2. Descrlbe the line s ément from Py = (1,1) to P; = (3,4) parametri-
cally. The vector P0P1 = 2 i +3 j. Hereis our plan. At¢ =0 we stand on Py; at
t=1we stand on P;. At some random time ¢ we stand on the point P, = (x,y) so

thatﬁ = l‘P()Pl So,

\

(171)(x>y5 :t(lal)(3>4j'

That is, . .
x—1Di+@-1)j= (21+3])

Our line segment is

142
x=1+a Githo<r<1.
y=1+3t,

There is a pretty picture on the next page.

Example 8.3. Graph the curve parameterized by

X = cost
y = sint
Z=1.

If one forgets about z = ¢, then the curve is the circle x> +y> = 1 as we saw in
Example 8.1. So we want to move around and around the cylinder x> +y? = 1
in three-space and we want our z coordinate to increase as time increases. The
resulting curve is a helix. (It looks like a spiral staircase.)
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Example 8.4. Describe the curve y = f(x) parametrically. This is really easy.

{yzf(X)~

The point is if you are willing to parameterize, then you can do calculus on any
curve you studied in first semester calculus, as well as circles, and helixes, etc.

If one would rather have one equation rather than a system of three equations,
then one can use vector notation:

() =x() T +3() T+ %,

where 7 (¢) is viewed as a position vector. The tail of 7 (¢) is NAILED TO THE
ORIGIN. (Most vectors can be moved. But the tail of a position vector is nailed to
the origin.)

— —
Example 8.1 becomes 7(t) cost i —|—_>sint J;
Example 8.2 becomes 7 (1) = (1 + %) )i+ (l)—l— 3t)_>] ;
Example 8.3 becomes 7(t) cost i +sint j +1k;and
T 0T
Example 8.4 becomes 7 (t) =t i + f(1) j,

The main advantage of the position vector notation is that if
) =x(t) T +y(1) T +2(0%
is the position vector of an object at time ¢, then
P =X 0T+ 0T+ K
is the velocity vector of an object at time ¢ (The velocity vector is tangent to the
path of the object at time 7 and the length of the velocity vector at time 7, | 7 (¢)], is

the speed of the object.) and

T =x"(0) T+ () T+ (K

is the acceleration vector of an object at time 7.

— —
Example 8.5. Let 7 (1) = cost i +sint j .

(a) Find the angle between 7 (¢) and 7'(1).
(b) Find the speed of the object.
(c) Find 7" (¢).

(a) We calculate
7)) = — sint i + COSZ‘?.
It follows that
7 (t)- 7' (t) = —costsins +sinrcost = 0.

Thus, | 7 (1) and 7’(¢) are perpendicular.
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(b) The speed of the object is the length of the velocity vector. This is
— —
7' (t)| = | —sins i +cost j | = \/(— sin?)2 + (cost)? = V/sin?t +cos?t =1 =1.

‘ The object is traveling with constant speed 1. ‘

(c) The acceleration vector is

= =
T"(t)=—cost i —sintj .

Our object is running around a circle. The acceleration of our object is always
pointed toward the center of the circle.
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9. Section 13.2. The equations of motion of an object.

Question 9.1. Suppose an object starts at the origin and is @;ed at angle o with
initial speed vo. The acceleration of the object is always —g j , for some positive
constant g. Give the position vector ?(Z) of the object at time t.

. . D e 4
The initial velocity of the object is 7 (0) = vocosa i +vpsina j . (See the
picture on the next page, if necessary.)
We are given:

%
() =—¢]
7'(0) = vy cos oi + vp sin 0c7
- =
70)=0i+0j

We integrate to learn .
7(t)=—gtj+ci
for some constant vector cf. Plug in # = 0 to learn
vocosaL i +vpsinoj = 7'(0) = ¢f.
Thus,
—1 e e s
r'(t)=—gt j +vocosa i +vpsina j
and . .
7'(t) = vocosau i + (vosino—gr) j .
Integrate again to learn
Y
ri 133

_>
T (t) = vo(cos o)t i + (vo(sina)t — &) +23,

for some constant vector c3. Plug in # = 0 to learn
0=T7(0)=0c3.

Thus,

_>
7 (t) = vo(cosa)t i + (vo(sino)r — &) .
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10. Section 13.3. Arc length.

Fact 10.1. The length of the curve parameterized by the position vector 7>(t) is
the end
/ 7 (¢)|dr.
the beginning
This is easy to understand. One integrates speed to get the distance traveled. In

the most elementary situation, (when the path of the object is a straight line and
the speed is constant) distance is equal to rate times time. In more complicated

situations (where the speed is not necessarily constant and the path is not necessarily
a straight line) one uses the more sophisticated version that
the distance traveled is the integral from the beginning to the end of the speed.

Example 10.2. Find the circumference of the circle with center (0,0) and radius
1. (Of course, we know the answer. The circumference of a circle is 27 times the
radius. The circle in the present problem has radius 1; so the circumference is 27.)
Lets use the technique of Fact 10.1 to find the answer. The circle is parameterized
by

X = cost .
) with 0 <t <2m.
y = sinf,
So the circumference of the circle is
o = w2 -
|(cost i +sint j)'|dt = | —sinz i +cost j |dt
0 0

21 3 21 m
= / sin t+cosztdt:/ ldt:t‘ :.
0 0 0

We did obtain the expected answer.
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11. Section 14.1. Functions of several variables.

Example 11.1. f(x,y) = x*> +y? is a function of two variables.

(a) What is the domain of f?

(b) What is the image of f?

(c) Sketch the graph of z = f(x,y).

(d) Draw a few level sets of f. That is draw the graph of f(x,y) = c for a few values
of c.

(a) A function is a machine. One hands the function some input and it spits out
the out put. The question “What is the domain of f?” means what KIND of input
can you put into this machine. This particular function will accept any point in the
xy-plane. So

’ The domain of f is the set of points in the xy-plane. ‘

(b) The question “What is the image of f?” means output does f give. (Some
people write “range” where I write “image”.) At any rate,

’the image of f is the set of real numbers which are zero or higher. ‘

(c) Sketch the graph of z = f(x,y) means “graph z = x> +y?. This is a paraboloid;
see Example 7.3 on page 45.

(d) Often times it is too hard to graph the function z = f(x,y). Instead one draws a
level sets of the function. (This is like making a topographic map. One can learn
where the hills and valleys are; where the terrain is steep and where the terrain is
gentle by looking at a topographic map. One need not look at a three-dimension
model of the region where one plans to hike. The level sets of the function in this
section are a bunch of concentric circles. One glance at the level sets and one knows
that the graph of the function is a giant bowl with the bottom sitting at the origin.
There are a few level sets on the next page.
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12. Section 14.2. Limits and Continuity.
LIMITS

Rough Definition: If f is a function and (xg, o) is a point, then

lim x,y) =1L
(xv)’)_>(x07)’0)f( y>

means that whenever (x,y) is near (but not equal to) (xp,yo), then f(x,y) is near L.

e The key point is that this is a very bold statement (because it has to work
for all posible meanings for the word “near”.) It is most important when
f(x0,y0) does not make any sense. An important example of a critical limit

sinx — 1. Another important example is lim (1 + %)" = e. “Radians”
n—yoo

is lim 2
x—0

are defined to make the first limit hold. In calculus one measures angles
in radians to make the formulas as easy as posible. Similary, the favorite
, again to make the formulas as easy as

‘6 29

base for exponentiating is base
posible.

e [ did not give you enough information to calculate limits for real.

e The usual way to show that ~ lim  f(x,y) does not exist is to calculate

(%)= (x0.y0)

lim  f(x,y) is one number but
(x.)—=(0,0)

along some path

lim f(x,y) is a different number.
(x,y)—(0,0)
along some other path
So, how does one show that a limit does not exist? In first semester calculus one
often shows that a limit does not exist by showing that the limit from the left is

different than the limit from the right. For example, let f(x) = | - Find hm f (x).

The function f(x) is equal to 1 when x is positive and f(x) is equal to —1 When xis
negative. Thus,

lim f(x)=1 and lim f(x)=—1.

x—0t x—0~

The two one-sided limits are different; thus, one concludes that lim f (x) does not
x—0

exist.
When one finds Plinll) f(P) when f is a function of several variables, then there
—ro

are many ways to approach the point Py. Consider the following problem,

a Find lim
( ) x.y)—(0,0) X +2y
alongy 3x

(b) Find N l)m(l0 o= +2y
along y= —x3
'5
c) Find lim 22X,
© (63)—(00) X2
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(a) We see that

Xy , x3(3x) , 3x* ) 3x*

lim =lim———=lm——= =lim————
(x2)+(09) ) x0+2y2 x=0x042(3x)2  1-0x0418x2  x—0x2(x* +18)
along y=3x

3x 2
=lim —— =
x50 (* + 18) =[]
(b) We see that
x3y ) xx’ ) x® x® 1 1
im ————— =lim———— =lim ———-=1im =lim=-=|=|

()00 x0+2y2  x=0x0+ 20632 T x50x0+ 240 x503x0 1503 |3

along y=x
(¢) The answers to (a) and (b) are different so  lim Xy does not exist.

(x3)—(0,0) o
CONTINUITY
In first semester calculus, one says that a function is continuous on its domain

if one can draw its graph without lifting one’s pencil. For example, which of the
following functions is continuous one [a,b]?



Continu 1y 01 Tunctions of pne Varitble
Facl, fictave | S dhe Graph of gr:f’(p)s

TLQ fl‘ihc"f(bh \fS COn '"“‘?%WS
Oon T ab]

&
The Function 15 G136 tivac,
/R ‘ q't c becquse F(C)
does hot € XSt
N e g
q ¢

15 drsconTravous

“The functio .
1 (x)

at < Le Cause jZ,w
X= o=

1,0 hot CRSFC
. A
oo Abe £C2) SH

qud eguels C.
The Funcdion (B
discen Tnyewrs 4t &

be caus€

Lim 1)+ (|
gt £(179 0

/(7/47(7“1 = <
a pbut € #t}




MATH 241, FALL 2024 67

The main problem with the first approximation of continuity is that it gives no
insight into what it means to say that a function of two variables is continuous.
Here is the official definition of continuity that works for any number of variables.

Definition The function f is continuous at Py if

(a) f(Py) exists,
(b) 13113} f(P) exists, and

(©) f(Py) = lim f(P).
P—)PO
Please look at the pictures on the previous page. These three conditions also
describe continuity in the one variable case.

I propose the following ideas are things you can take away from the discussion
of continuity.

e Most functions one meets in calculus or life are continuous where ever
they are defined.

e If you are asked “Where is this function continuous?” you should first figure
out where the function is defined.

e Usually, if you are dealing with a discontinuous function in life, there are red
flags indicating the discontinuity. For example, “... and then a switch was
flipped and the power was turned off™ is a clear indication of a discontinuous
process.
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13. Section 14.3. Partial Derivatives

Given z = f(x,y),
(a) to find g—i: pretend y is constant and take the derivative with respect to x ( g—f; is
called the partial derivative of f with respect to x), and
(b) to find 3—5 pretend x is constant and take the derivative with respect to y (3—5 is
called the partial derivative of f with respect to y) .

Example. Let f(x,y) = 6x*y* + xsiny+ ytanx. Then

%)
—f = 18x*y* + siny + ysec’x
ox
)
—f = 24)c3y3 + xcosy 4 tanx.
dy
What does it mean?

3—{ |(a,b) is the slope of the line tangent to the curve which is the intersection of
the surface z = f(x,y) and the plane y = b at the point (a,b, f(a,b)).

% |(a7b) is the slope of the line tangent to the curve which is the intersection of
the surface z = f(x,y) and the plane x = a at the point (a,b, f(a,b)).

Please look at the picture on the next page.
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14. Section 14.4. The Chain Rule for functions of several variables.

The fact that you are in Math 241 guarantees that you can do the Chain Rule for
a function of a single variable. If y is a function of u and u is a function of* x, then

dy dydu
dx  dudx’
For example, if y = sin(xz), you could think y = sinu and u = x2; so,5
dy dydu B >
= dude (cosu)(2x) = 2xcos(x7).

What does the Chain Rule look like for functions of several variables? If

z=1z(x,y), x =x(t), and y = y(t), then there are two contributions to %; namely

%% and g—;%. I find the picture

x/Z\y
+

t t

to be helpful. In order to calculate % correctly, one must ADD the two contribu-
tions®:

dz dzdx  dzdy

dr " oxdr dydr
The best way to convince you of this is to work at an example two ways; once using
the chain rule and once not using the chain rule and then observing that the same

answer was obtained each time.

Example. Suppose w = x> 4 y%, x = cost +sint, and y = cost — sinz. Compute ‘fi—vf
two ways.

(a) In the first way, express w in terms of ¢ without any x’s or y’s. Then directly
calculate ij—vf.

(b) In the second way, first use the Chain Rule for functions of several variables,
then write every remaining x and y in terms of ¢.

“4The usual shorthand for these words is “If y = y(u) and u = u(x)”.

SPlease notice that u was not part of the original problem; so u is not allowed to be part of the
answer.

YT should comment about the fact that sometimes I have written d and sometimes I have written
d. The symbol z is a function of the two variables x and y. When I take a derivative of z with respect
to either x or y, that derivative is in fact a partial derivative. However at the level of ¢, z depends only
on ¢ and so do x and y; consequently the derivative of z, or x, or y with respect to ¢ all are ordinary
derivatives. This is not a huge point. If one messes it up, almost everyone will figure out what was
meant. But using the wrong symbol is like making a spelling mistake or a grammar mistake. Almost
everyone knows what was meant, but a sense of indifference or ignorance was communicated along
with the content.
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(a) Observe that
w = (cost +sint)? + (cost —sinz)?.
Thus,
w = cos?t + 2 cost sint + sin’ ¢ + cos>f — 2cost sin + sin’ 7.
The terms +2cos?sinf — 2 cost sint add to zero. The terms cos® +sin’ ¢ both add to
1, and

w=2.
We compute that
dw
o0
dt
(b) Observe that
dw odwdx oJwdy
dt  Oxdt Oy dt
Thus,
dw ) .
o= 2x(—sinz +cost) + 2y(—sint — cost)
dw

— =2(cost +sint)(—sint 4+ cost) + 2(cost — sint ) (—sinz — cost)

dt
d
d—v: = 2(cos?t —sin’) 4+ 2(sin?¢ — cos*t) =

Here is one more comment, which is probably obvious. If z = z(x,y), x = x(s,1),
and y = y(s,7), then

dz dzdx 0zdy

ds  Oxds  Jyos
and

dz dzdx dzdy

ot  oxor dyor

In this case, the helpful picture looks like

N

.
/

AN
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15. Sections 14.5 and 14.6. Gradients, directional derivatives, and tangent
planes.

Suppose f = f(x,y). We saw that %’(a.,b) measures the rate of change of f if I

start at the point (a,b) and walk in the direction i and 3—§ |(a,p) measures the rate of

change of f if I start at the point (a,b) and walk in the direction j .
It is natural to ask the following questions?

(a) How do I find the rate of change of f if I start at the point (a,b) and walk in
some other direction?

(b) Istart at the point (a,b). In which direction should I walk if I want f to increase
as rapidly as possible?

(c) Istart at the point (a,b). In which direction should I walk if I want f to decrease
as rapidly as possible?

(d) I start at the point (a,b). I want to walk, but T want f to remain as unchanged
as possible. Which way should I go?

The fact of the matter is that if you are looking at a topographic map (i.e. a
picture of many level sets of f), then you can answer these questions instantly. The
point of sections 14.5 and 14.6 is to answer these questions even if we don’t have a
topographic map handy.

Here is a collection of level sets. Start at the point P. Notice that the vector
labeled (b) gives the steepest climb starting at P, the vector labeled (c) gives the
steepest decent starting at P, and the vector labeled (d) gives a direction with virtu-
ally no change in f. (The vector labeled (d) is supposed to be tangent to the level
set containing P. It also is supposed to be perpendicular to (b) and (c).)
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At an rate, if f is a function, P is a point, and V is vector, then

D+ flp

is the directional derivative of f in the direction of v starting at the point P. This sym-

bol, when fully decorated, represents a number. When V= l then
D= flp= U p.

(Keep in mind that f is a function and when this function i 1s evaluated at the point
P, one obtains a number) In a similar manner, when v = ] then
_9f
D7f lp= oy |p.
(Keep in mind again that g—f; is a function and when this function is evaluated at the
point P, one obtains a number.)

In general,
v v
(15.0.1) Dy flr=Vflr %
where ? f is called the gradient of f and
o) o) of —
Vr=Y7 19T YT = pnd)
ay 0z
and
of » df— .
Vr=SLT+ 3T it s

. = .- . . ’s
Iiotlce that V f is a “vector-valued function of several variables.” In other words,

i . . = .- o
V f is a function, the _d)omam of V f is a set of points in two space or three space’

and the answers that V f gives are vectors.?
I will calculate some D+ f

must comment on (15.0.1).

p, some V f, and some V f|p in just a minute. First I

The directional derivative D+ f|p does not have any thing to do with the length

of ¥ all that matters is the direction of V. That is why % appears on the right

side. Some people won’t even write the symbol D+ f|p unless V has length 1. The
ultimate formula is easier for such people, but they have to remember to adjust the
input to be appropriate before they plug the input into the easier formula. You can
do whichever you like, but be sure to do it correctly.

The formula (15.0.1) also tells us the significance of the gradient vector. Recall
that

— — —
@ - b =|d|| b|cos(the angle between @ and b ).

TThis is the meaning of “of several variables”

%
8This is why V f is called a “vector-valued” function.
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So’

= v v —
D flp=1|V flp| |‘—77|\cos(the angle between V f|p and V).

% . . .
The number |‘—%r|\ is always 1; the function cosine roams between —1 and plus 1.
We conclude that

(a) The gradient vector ? f|p points in the direction of the largest directional de-
rivative of f at P.

(b) The length of the gradient VE>ctor is the largest directional derivative of f at P.

(c) Minus the gradient vector V f|p points in the direction of the smallest direc-
tional derivative of f at P and minus the length of the gradient vector is the
smallest directional derivative of f at P.

(d) GRADIENTS ARE PERPENDICULAR TO LEVEL SETS.

The assertion (d) can be thought of as Gradients are fleeing the level set as ex-
pediently as possible. The direction which flees the status quo as expediently is the
direction perpendicular to the status quo.

Assertion (d) can also be thought of this way. Any direction which is perpen-
dicular to the gradient has no change in f. In other words, if one is walking in the
domain of f and one’s direction is perpendicular to the gradient of f, then one is
leisurely walking along along a level set of f.

Here is an example:

9The ri ght side of this display is the length of the gradient vector evaluated at P times the length

of the unit vector Il times the cosine of the angle between the two vectors.
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Here is another example.

Example Find the equation of the plane tangent to z = x> +y? at (1,2,5). (Of
course the surface z = x* +y? is just a paraboloid. Draw the parabola z = y? in the
yz-plane. Now revolve the parabola about the z-axis. I'll put a picture at the end of
the example.)

At any rate, gradients are perpendicular to level sets. So we view the given
equation as a level set. That is, we move z to the other side. Now our surface is
level zero of the function f(x,y,z) = x> +y? — z. Our tangent plane is perpendicular
to the vector

v oOf = of = df > A 2> 7 7
(VO =5z i +5-d =2k )25 =2xi +2yj —k)|n25 =210 +4j — k.
ox dy 0z
i . A
The equation of the plane through (1,2,5) and perpendicularto 2 i +4 j — k is

2x—=1)+4(y—2)—(z—5) =0.

I promised a picture of the paraboloid x> 4-y? = z. I will include for free how I
remember the equatigl of the plane through (xo,yo,z0) perpendicular to

- =
N=A7 +Bj+Ck.
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16. Section 14.7. Extreme points for functions of two variables.

There are two two parts to this section:

A. Local extreme points.
B. Absolute extreme points.

16.A. Local extreme points. The problem we study is: given a differentiable

function z = f(x,y), find all points (a,b) such that

(@) f(x,y) < f(a,b) for all points (x,y) near (a,b) (in this case, (a,b, f(a,b)) is a
local maximum point of the graph of f), or

(b) f(a,b) < f(x,y) for all points (x,y) near (a,b) (in this case, (a,b, f(a,b)) is a
local minimum point of the graph of f), or

(c) the plane tangent to z = f(x,y) at (a,b, f(a,b)) is parallel to the xy-plane, in
some direction (a,b, f(a,b)) is a local minimum point, and in some other di-
rection (a,b, f(a,b)) is a local maximum point (in this case (a,b, f(a,b)) is
called a saddle point of the graph of z = f(x,y)).

The next page contains three pictures.

e The origin is a local minimum point of z = x> + y?.
e The origin is a local maximum point of z = — (x> +y?).

e The origin is a saddle point of z = y> — x. The plane tangent to z = y> — x?

at the origin is the xy-plane. If one looks at the intersection of z = y* — x?

and the plane x = 0, then one is looking at z = y*> which clearly has a local

minimum at the origin. If one looks at the intersection of z = y*> — x? and
the plane y = 0, then one is looking at z = —x? which clearly has a local

maximum at the origin.
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In first semester calculus one finds the local extreme points of y = f(x) by finding
all points where Z—x = 0. These points are called critical points. Then one applies
the second derivative test at each critical point.

Here is the second derivative test from first semester calculus.

e If xo is a critical point of y = f(x) and 0 < f”(xo), then (y = f(x) is concave
up at xq) and (xo, f(xp)) is a local minimum of y = f(x).

e If xo is a critical point of y = f(x) and f”(xo) < 0, then (y = f(x) is concave
down at xg) and (xo, f(xp)) is a local maximum of y = f(x).

e If xo is a critical point of y = f(x) and f”(xo) = 0, then you will have to use
some other test to figure out if (xp, f(xg)) is really a local extreme point of
y = f(x) and what kind of local extreme point (xo, f(xp)) is.

It is probably worth pointing our that if x( is a critical point of y = f(x) and
f"(x0) = 0, then anything is possible. In particular, f(x) = x°, f(x) = x*, and
f(x) = —x* all satisfy f'(0) = 0 and f”(0) = 0 but y = x> does not have a local
extreme point at the origin, y = x* has a local minimum at the origin, and y =
—x* has a local maximum at the origin. I have sketched this pictures on the next

page.
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To find the local extreme points for a function of two variables, we do more
or less the same thing as was done for a function of one variable. There are two
changes.

e We have to deal with two partial derivatives instead of one ordinary deriva-
tive.

e The second derivative test is a little more complicated because it has to deal
with saddle points which do not occur for functions of one variable.

The procedure for finding the local extreme points and saddle points of z = f(x,y).

Step 1. Find all points (a,b) where both partial derivatives % and % are zero. Such
points (a,b) are called the critical points of f.

Step 2. Apply the Second Derivative test at each critical point (a,b) of f.

The Second Derivative test for a function of two variables. Suppose (a,b) is a
critical point of the function z = f(x,y). Let!”

_(@rdr (3£
H= (a—w ~(5) '
(a,b)

e If H <0, then (a,b, f(a,b)) is a saddle point of z = f(x,y).
e [f0<Hand0< 327{\(“,1,), then (a,b, f(a,b)) is a local minimum of

2= flay).
e If 0 < H and 371;](07;,) < 0, then (a,b, f(a,b)) is a local maximum of
z=f(xy)

e If H =0, then you have to use another test.

I think of the second derivative test this way. The Hessian separates the saddle
point from the honest local extreme points. Once one is certain that one is looking
at an honest local extreme point, then the second derivative test from first semester
calculus kicks in. If you are standing on an honest local extreme point and the graph
is concave down, then you are standing on a local minimum. If you are standing on
an honest local extreme point and the graph is concave up, then you are standing on
a local minimum.

Do notice that H is fic(a,b) fyy(a,b) minus a perfect square. If H is positive, then
fre(a,b) and fyy(a,b) have the same sign.

At our favorite saddle point (the origin on z = y> —x?), the two pure partial deriva-
tives fy, and f,, have opposite signs; hence H is negative. If we rotated the saddle
surface a little bit, keeping the z-axis fixed, the equation of the rotated saddle sur-
face would be a little different. It is not immediately obvious that the new f, and
the new fy, have opposite signs; but the new fxzy term in the Hessian would play a
more important role and the Hessian would still be negative.

10The Hessian H is the product of the pure second partial derivatives minus the square of the
mixed second partial derivative evaluated at the point (a,b).
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If the Hessian is zero, you really do not know what you have. The three functions
flx,y) =x*+y*, f(x,y) = —(x*4+y*), and f(x,y) = y* —x* all have critical points
at the origin and all have H equal zero at the origin; but f(x,y) = x*4y* has a local
minimum at the origin, f(x,y) = —(x* +y*) has a local maximum at the origin, and
f(x,y) = y* — x* has a saddle point at the origin.'! On the other hand, you should
not spend a lot (i.e., any) time worrying about H = 0. We have to leave things for
you to learn after you complete this class.

You should do the calculation to find the local extreme points and saddle points
of f(x,y) =x*+y2, f(x,y) = —(x> +y?), and f(x,y) = y* — x%. These are easy and
you know what the answers are.

I will type a more exotic problem.

Example Find all local maximum points, local minimum points, and all saddle
points of f(x,y) = x>+ 3xy? — 15x +y> — 15y.

We calculate f; = 3x? 4+ 3y? — 15 and f, = 6xy+3y* — 15.

We solve the system of equations
0=3x243y>—15
0= 6xy+3y>—15

simultaneously. The solution set of our system of equations is unchanged if the
second equation is replaced by the first equation minus the second equation. We
solve the system of equations

0=3x>+3y*—15
0 = 3x> — 6xy
simultaneously. We solve the system of equations

0=3x>+3y*—15
0 =3x(x—2y)

simultaneously. If x = 0 then y = ++/5. So two critical points are (0, \/5) and
(0, —+/5). To find the other critical points we solve

0=3x>+3y>—15
0=x—2y

simultaneously. We solve

0=3(2y)%>+3y*—15
x =2y

UThe graph of £ (x,y) = x* 4 y* looks somewhat similar to the graph of f(x,y) = x> +y?. The
analogous statements hold for the other two surfaces.
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simultaneously. We solve

0=15y>—-15
x=2y

simultaneously. The critical points are (0,v/5), (0,—+/5), (2,1), and (—2,—1). We
must apply the second derivative test at each critical point.
We calculate fy, = 6x, fx, = 6y, and f, = 6x+ 6y. We see that

Fechiy = fry = 36(x(x+y) = %) = 36(" +xy = y7%).
Observe that at (0,/5) and (0, —/5) the Hessian is
36(0+0—5),

which is negative. We conclude at this point that (0, /5, £(0,+/5)) and (0, —/5, £(0,—/5))
are both saddle points of z = f(x,y).
At the critical point (2, 1), the Hessian is

36(4+2—1)

and this is positive. Furthermore fy,(2,1) = 12, which is also positive. We conclude
at this point that (1,2, f(1,2)) is a local minimum point of z = f(x,y). (If it is useful
to you, my mind processes: I am standing on a local extreme point the second
derivative is positive; so the graph is concave up. I must be standing on a local

minimum.)
At the critical point (=2, —1), the Hessian is
36(4+2—1)
and this is positive. Furthermore fy(—2,—1) = —12, which is negative. We con-
clude at this point that (—2,—1, f(—2,—1)) is a local maximum point of z = f(x,y).

(If it is useful to you, my mmd processes. I am standing on a local extreme point
the second derivative is negative; so the graph is concave down. I must be standing
on a local maximum.)

At any rate the answer to the problem is:

0,v/5, £(0,+/5)) is a saddle point of z = f(x,y);

(
(0,—/5, £(0,—+/5)) is a saddle points of z = f(x,y);

(2 , ,f( 1)) is a local minimum point of z = f(x,y); and
(=2,—1, f(—2,—1)) is a local maximum point of z = f(x,y).

16.B. Absolute extreme points. Today we study absolute extreme points from
14.7. Humans are very fond absolute extreme points. We want to find the maximum
possible profit; or we want to find the maximum possible strength; or we want to
find the minimum possible risk, etc.. Consequently, this is a very important unit.

Lets first recall the first semester calculus version of the problem. The mathe-
matical basis for the calculation is the following Theorem.
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Theorem. A continuous function defined on a closed interval has an absolute max-
imum and an absolute minimum.

The standard max-min problem in first semester calculus is: Let f(x) be a con-
tinuous function defined for a < x < b. Find the absolute maximum points and the
absolute minimum points of y = f(x) witha <x <b.

The plan of attack is based on the fact that the the absolute extreme points occur
either in the interior or on the boundary. If an absolute extreme point occurs in the
interior than it must occur at a local extreme point (hence at a critical point where
f(x) =0o0r f'(x) does not exist.) We collect all of the critical points; we also collect
both boundary points. The maximum occurs at one of these and the minimum also
occurs at one of these. We plug each critical point and each boundary point into f
and determine largest and smallest value of f. We label the corresponding points as
the absolute maximum and absolute minimum points of y = f(x) fora < x < b.

Here is an example. Find the absolute maximum and absolute minimum of
f(x) =5—x> with —2 < x < 1. We see that f’(x) = —2x. Thus f'(x) = 0 when
x=0. Weplugx=—-2,x=0,and x =1 into f

f(=2)=5- (=27 =1
f(0)=5-(0)>=5
f1)y=5-(1)>=4

We observe that 5 is the largest number among 1,5,4 and 1 is the smallest. We
conclude that

(0,5) is the absolute maximum of y = f(x) on [-2, 1] and
(—2,1) is the absolute minimum of y = f(x) on [-2,1].

I will put a picture on the next page.
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Absolute extreme points of functions of two variables.
We start with the mathematical basis for the project.

Theorem. A continuous function of two variables which is defined on a closed
bounded region in the xy-plane has an absolute maximum and an absolute mini-
mum.

A region in the plane is bounded if one can draw a giant circle around it. (The
point is that the region does not go off to infinity; it lives inside some giant circle.)
A region in the plane is closed if it contains its own boundary. We dealt with the
word continuous in section 14.2.

Please do not worry about any of the above words. I will tell you the region of
interest by telling you its boundary. The instructions about the region will look like
“the region which is bounded by the circle ...”, or “the region which is bounded by
the triangle ...”, or “the region which is bounded by the curves ... .

The goal of today’s lecture is: We are given a continuous function f(x,y) which is
defined on a closed bounded region R in the xy-plane. We want to find the absolute
maximum and the absolute minimum of f on R.

The approach in 241 is similar to the approach of first semester calculus.

Step 1. Find all points in the interior of the region where both partial derivatives of

f vanish (or at least one of the partial derivatives does not exist'?).

Step 2. Find all candidates for absolute extreme points of f that are on the boundary
of the region. This part of the problem is significantly more complicated than the
corresponding calculation in first semester calculus. If the boundary of the region
has endpoints, then those endpoints certainly are candidates for absolute extreme
points of f. In all cases the majority of the boundary of R consists of curves.
Parameterize these boundary curves. (You might have to do this in more than one
piece!) Look at f restricted to each of the boundary curves as a function of the
parameter. Apply the first semester calculus technique to f restricted to each of the
parameterized boundary curves. (You will understand the instructions for Step 2
once you see an example or two.)

Step 3. Once you have collected all of the candidates for the absolute extreme
points of f on R, plug each candidate into f. Identify the absolute maximum and
the absolute minimum.

Example 1. Find the absolute extreme points of f(x,y) = 2x> —y> 4 6y on
a2+ y2 < 16.
Step 1. We calculate f, = 4x and f, = —2y+ 6. We see that f, and f, are both zero

at (0,3). Save this point for use in Step 3.

121 this course, you won’t have to worry about this second option. Again, this is something you
can worry about after the course is over, if you like.
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The domain of f is everything inside or on the circle x*> +y> = 16. The boundary
of the domain is x> 4 y* = 16.
We could parameterize this circle in two pieces

e First piece: y = v/ 16 —x2 for —4 < x < 4 and
e Second piece: y = —v/16 —x2 for —4 <x < 4.

If we go this route, we have introduced the two end points (—4,0) and (4,0).
It turns out that I am rather lazy. If I can parameterize the boundary in one
piece with one end point, I would prefer to do that rather than to parameterize the

boundary with two pieces and two end points.
13

x=4cosH
y=4sin6
with 0 < 0 < 2m. (I have one endpoint because 8 = 0 and 6 = 27 both give the point

(4,0). Save this point for use in Step 3.) Let f|pqry represent “f restricted to the
boundary”. We see that

I parameterize the boundary as

Floary = 2(4c0s8)? — (45inB)* +6(45in6).
In other words,

Flodary = 32cos*@ — 16sin® @ 424 in 6.

d
—(f|bdry) = 64cosO(—sin®) —32sinBcos O+ 24 cosO

do
= —96c0s0sinO +24cosO
= —24cos0(4sin6—1)

Thus, %(ﬂbdry) = (0 when cos® =0 or sin® = le' If cos® = 0, then O is equal to 5

or 3F and (x,y) is equal to (0,4) or (0,—4). If sin® = }, then we draw the standard

right triangles with OP = 1, HYP = 4, and ADJ = \/ﬁ or ADJ = —\/E to see

that cos0 is equal to @ or —@. (I will put a picture of these triangles at the

end of this problem.) The corresponding points on the circle x> +y?> = 16 where

4 (floary) = 0 are (v/15,1) and (—v/15,1) (because x = 4cos 0 and y = 4sin6).
The full set of points on the circle x*> +y* = 16 where % (flbdry) = 0'is

(0,4), (0,—4), (V15,1), and (—V15,1)

Save all four of these points for use in Step 3. We must consider the “endpoint”
of the boundary (4,0). We must consider the interior critical point (0, 3).

3Feel free to use the parameterization by y = , /... and y = —, /... You will get the same
ultimate answer. You may prefer one parameterization more than the other.
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Step 3. The absolute extreme points of f occur at some of these points we saved in
Steps 1 or 2. We compute

£(0,4) =2(0)* — (4)* +6(4) =8
£(0,-4) =2(0)* — (~4)* +6(~4) =
FV15,1) =2(V15)* = (1) +6(1) =
F(=V15,1) =2(=V15)* = (1) 6(1)
£(4,0) =2(4)* — (0)* +6(0) = 32
£(0,3) =2(0)* — (3)* +6(3) =9

We conclude that

(v/15,1,35) and (—+/15,1,35) are the absolute maximum of z = f(x,y) on x> 4y < 16, and
(0, —4, —40) is the absolute minimum of z = f(x,y) on x*> +y? < 16

I promised to draw a picture which shows how to calculate cos 0 if you know
sin® = 1/4. See the next page.
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Example 2. Find the absolute extreme points of f(x,y) = 3xy — 6x —3y+ 7 on the
triangular region with vertices (0,0), (3,0), and (0,5).

On the previous page we drew the domain R and we labeled the three parts of
the boundary bdry1, bdry2, and bdry3. Of course the boundary has three endpoints:
(0,0), (3,0), and (0,5). Save these three points for step 3.

Step 1. We compute f, = 3y —6 and f, = 3x — 3. We see that f; and f, are both
zero at the point (1,2). We verify that this point is in our triangular region;14so we

save this point for step 3.
Step 2. We treat each piece of the boundary separately.

bdry 1. The y-axis is x = 0; thus bdryl isx =0 with 0 <y <5 and
flodryt = —3y+7. We compute diy(f|bdryl) = —3 and —3 is never zero. Thus, bdry1
does not contribute any points to Step 3 (other than the endpoints).

bdry 2. The x-axis is y = 0; thus bdry2 is y = 0 with 0 < x < 3 and
flbdry2 = —6x+7. We compute %(f|bdry2) = —6 and —6 is never zero. Thus, bdry2
does not contribute any points to Step 3 (other than the endpoints).

bdry 3. This part of the boundary is the line through (0,5) and (3,0). The line has
slope _TS The equation of the lineisy—5 = _TS(x— O)ory=5— %x for0 <x <3.
Thus,
flodryz = 3x(5 — %x) —6x—3(5— %x) +7.

In other words,

flbdry3 = 14x —5x* — 8.
We compute

4 (flbdry3) = 14 — 10x.

Thus, <L (flbary3) = 0 when x = Z. We then compute that y =5 — 3 () = £. Save
the point (1, %) for step 3.

We have calculated all candidates for the absolute extreme points. We found all
interior critical points. We found all boundary critical points on all three pieces of
the boundary. We found all boundary points on the boundary. We are ready to do

step 3.

)=1

) =17

)=—11

)=—8
f(5:3)

14Actually, I don’t verify that (1,2) is in our region until I know that the equation of bdry3 is
y=5—3x. At that point I happily see that 2 < 1 = 5— 3(1) = bdry3(1).
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We conclude that

(0,0,7) is the absolute maximum of z = f(x,y) on the triangular region; and
(3,0,—11) is the absolute minimum of z = f(x,y) on the triangular region.

16.C. Section 14.8. Lagrange multipliers. One can use Lagrange multipliers to
find the absolute extreme points of z = f(x,y) on the level set g(x,y) = k.

Possibly g(x,y) = k is (part of) the boundary of an absolute extreme point prob-
lem or maybe the Lagrange multiplier problem is a complete problem in its own
right.

The idea is based on the fact that GRADIENTS ARE PERPENDICULAR TO
LEVEL SETS.

Imagine some level sets of z = f(x,y). Now imagine the constraint g(x,y) = k
imposed on the collection of level sets for z = f(x,y).

The absolute extreme points of z = f(x,y) restricted to the constraint g(x,y) =k
occur either

1. at a point where g(x,y) = k is tangent'” to the level set of f or
2. at an endpoint of the constraint, or
3. at a non-smooth point on g(x,y) = k.

15yf you are walking along g(x,y) = k and cross a level set of f, then we are climbing or going
downhill. The other option is that you are tangent to a level set of f. In this second option, you have
reached the top or the bottom.



Sowe lewel seds 0f £ awx i blue

TACT CenStadut ﬂ(xfiﬂ“;‘ % [S rh !)/C?C /2

Dlbsevee the ¢ Fhe O bsolte exticre Pejo s ot Z=Lixy)
-2 ’fé( (’_’6‘1143’fir4,‘,~,z-{~ 3(7‘/7 ) ;ﬁ CQ[[(,L S f(/\r o he p{ -f[‘,(,,.o

fFollewivg 3 4rpes of poiurs
e R | =1 =
(1 A paar (ap) whee vqﬁ/(é? }1'5 Pavellel to ;Zg &
e

Q) An ewdpaut ot J(xng)=f oF

.4 o o
2] A point @)6) Wheve T
(\lli ff \\ ] f’”(é(ép D




MATH 241, FALL 2024 97

Example 16.1. Find the maximum of f(x,y) = x>y subject to the constraint
x% +3y? = 48.

We let g(x,y) = x> + 3y%. Notice that the graph of g(x,y) = 48 is an ellipse; all
points on the graph are smooth points and there are no end points. We look for all
points P = (x,y) with

g(P) =48
= —
AVelp=Vflp

for some number A. We find all (x,y,A) with

X2 +3y? =48
— — - —
M2xi +6yj)=3x%yi +xj

We find all (x,y,A) with

X2 +3y? =48
A2x = 3x%y
A6y = x°

The middle equation gives either x = 0 or 2A = 3xy.

If x = 0, then the bottom equation says that y = 0 or A = 0. We see that (x,y) =
(0,0) does not satisfy the top equation. We are left with two cases. Either x =0 and
A=0andy=+4or

x#0

x? 4+ 3y? =48

2\ = 3xy

A6y = x°

The second case is equivalent to

x#0 x#0 x#0
x%+3y* =48 or x%+3y? =48 or 12y* =48
2\ = 3xy 2\ = 3xy 2\ = 3xy
ey = 9y* =x? 9y =x>

Thus, y> = 4; hence y =2 or y = —2. When y = 2, then 36 = x? and when y = —2,
then 36 = x? The candidates for absolute max and absolute min are

(x,y) = (672)7 (_6=2>7 (67 _2)7 (_67 _2)= (074)a (07 _4)"
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We plug the candidates into f:

£(6,2) =2(216)
f(—6,2) = —2(216)
£(6,—2) = —2(216)
f(—6,-2) =2(216)
£(0,4)=0
£(0,—4) =0.

We conclude that

the maximum points of f on x? +3y? = 48 are (6,2,432) and (—6,—2,432) and
the minimum points of f on x> + 3y? = 48 are (—6,2, —432) and (6, —2,—432).

Example 16.2. Find the absolute extreme points of f(x,y) = 4x+ 6y -+ 5 subject to
the constraint x> + 3y* = 28.

We use the method of Lagrange multipliers. Let g(x,y) = x> + 3y?. Notice that
the graph of g(x,y) = 28 is an ellipse; consequently, the constraint is smooth and
has no endpoints. The absoluti extreme points of z = f(x,y) on g(x,y) = 28 at
points P on g(x,y) = 28 where V f|p is parallel to V g|p. We find all such points.

We find x,y, A with

{g(x,y) =28

— =
AV fly) = V&lay

x> +3y> =28
- = — —
Mai +67)=02xi +6yj))
(x2+3y2 =28
{4k =2x
| 61 = 6y

(%2 43y =28
2h=x
\x:y

(20)2 4322 =28
2h=x
A=y

A =28
2Ah=x
A=y
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A=2or —2

2h=x

A=y
WhenA =2, thenx =4 and y=2. When A = —2, then x = —4 and y = —2. Observe
that

f(4,2)=4(4)+6(2)+5=33f(—4,-2)=4(—4)+6(—-2)+5= —23
We conclude that

(4,2,33) is the absolute maximum of f on g = 28 and
(—4,—2,—23) is the absolute minimum of f on g = 28.
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17. Sections 15.1, 15.2, and 15.3. Double integrals.

The definite integral that you studied in first semester calculus, the double integral
that we begin to study today, the triple integral that we study beginning with 15.5,
and the line integral of Chapter 16 all are defined in more or less the same manner.
(At this point, I am not writing about how to compute the things; I am writing about
what they mean. There is no point computing them if you don’t know what they
mean. Furthermore, the applications are derived from the definitions of the objects
and the reason you learn about these integrals is because they have applications.)
At any rate, I will define the definite integral, the double integral, the triple integral,
and the line integral fairly carefully.

I first define the definite integral. I hope that this definition looks somewhat
familiar from first semester calculus.

The (verbose) definition of the definite integral. Let a and b be numbers with
a < b and let f(x) be a function which is defined for a < x < b. We define the
definite integral of f on the closed interval [a,b]; this object is denoted

/abf(x) dx.

The definition goes like this'S. Partition the closed interval [a, D] into n pieces (for
some positive integer n); so

a=x)<x; < <Xxp1 <xp=>b.

For each index i with 1 <i <n, let A; = x; —x;_1 and pick an element x; in the
interval [x;_1,x;]. Multiply f(x}) times A;. Add up all of the products

Y F(x5)A.
i=1

Now take the limit as n goes to infinity and all A; go to zero. If the limit exists, then
the limit is called the definite integral of f on [a,b] and is denoted

/abf(x) dx.

Possibly, some people would prefer that I rewrite the above discussion with fewer
words. (I will, but I am just as happy with the verbose version.)

The (concise) definition of the definite integral. If f is a function which is defined
for a <x < b, then

b n
x)dx= lim XA
G Jlim Y1)
wherea =xg <x; <x <---<x, =b, A =x; —x;—1,and x;—1 <x; <ux;.

16By the way, the definite integral is a number.
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First Application of the definite integral: AREA. If f(x) is a continuous non-
negative function defined for a < x < b, then

/abf(x)dx

is the area of the region'’ whose top is y = f (x), bottom is the x-axis, left side is
x = a, and right side is x = b.

Picture 1 on the next page is a picture of the first application of the definite
integral.

Picture 2 on the next page tries to suggest why this application makes sense.
Suppose someone wanted'® the area of our shape. (This shape has a flat bottom,
straight sides, and a curvy top.'”) The natural thing to do is to say is “I’ll pretend
the region comes in pieces, I'll pretend each piece is a rectangle, I know how to find
the area of a rectangle. That will be close enough.” In Picture 2, we chopped the
base into three pieces. Observe that

SODAL+ f(x3) A2+ f(x3)As3
is exactly equal to the area of the approximation. Of course, the approximation
does not have exactly the same area as the official shape. One would get a better
approximation by chopping the official shape into smaller pieces and using smaller
bases. The exact area is the limit of the above process, if the limit exists, 20

170ne reason for studying double and triple integrals is that when one uses a double or triple
integral one need not be nearly so fussy about how the region in 2-space or 3-space looks.

18The person wants the area for a practical reason. He or she wants to paint it, or tile it, or encrust
with jewels, or whatever. The cost of the job will depend on the area of region.

190ne reason for studying double and triple integrals is that when one uses a double or triple
integral one need not be nearly so fussy about how the region in 2-space or 3-space looks.

20The miracle is that the limit does exist and is easy to calculate. This is called the Fundamental
Theorem of Calculus. You are quite familiar with how to calculate | ab f(x)dx. (One finds the anti-
derivative of f and plugs in the end points.) You are so used to calculating f: f(x)dx, that you
might have forgotten what exactly you are calculating. This discussion is an attempt to refresh your
memory.
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Second Application of the definite integral: WORK

Let f(x) be a force which is aimed in a single direction; although f(x) is not
necessarily constant. The standard example of such a force is the force of a spring
with one end held fixed. There is a picture of one such spring on the next page. The
more I pull on the free end the more spring fights against me. I want?! to calculate
how much work is done as I stretch the spring from x = a to x = b.

The relevant fact from Physics is that if the force is constant and in single
direction and the object is moved in the direction of the force, then

Work is equal to force times distance.

In our problem, the force is not constant, so we chop the interval [a, D] into small
pieces. In each piece, we pretend that the force is constant. We find the work as
the object is moved from one end of the small piece to the other end by the pretend
constant force:

Fi)A:
We add up all of these approximations of the work done. If we want a better ap-
proximation of the work done, we chop [a,b] into smaller pieces. If we want to
know the exact amount of work done, we take the limit. It is a miracle (called the
Fundamental Theorem of Calculus) that the limit exists, is easy to compute, and
can be computed using anti-derivatives.
At any rate we have the following fact.

Fact If f(x) is a force which is aimed in one direction then the work done as an
object is moved in the direction of f fromx=atox=bis [ ab f(x)dx.

The next layer of sophistication is to allow the force’s direction as well as its
magnitude to change. To calculate the work done by such a force one uses a line
integral. Line integrals are the subject of Chapter 16. There is a decent chance that
the semester will end before we get there.

I promised a picture of a spring. See the next page.

2lof course, the reason I care is that the amount of energy I have to buy to do the job is directly
calculated from the amount of work that is required to do the job. I want to know what the job will
cost.
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That is enough preamble. It is time to look at the topic of today’s lecture. We
define the double integralzz.

Double Integral. Let R be a region in the xy-plane and f(x,y) be a function defined
on R. We define the double integral of f over R, which is denoted>?

//Rf(x,y)dA.

Use horizontal and vertical lines to partition R into rectangles. Number the rect-
angles from 1 to n. For each index i, with 1 <i < n, let A; be the area of rectangle i
and pick a point (x},y!) in rectangle i. Then the double integral of f over R is?*

n
x,y)dA = lim X590
[ fmaa= im Y700
There is a picture of the “numbered rectangles” on the next page.”> Notice that it
does not matter what you do with rectangles that are part in R and part out of R.
You can use them or not use them as you like. This error disappears as you take

lim .
all Aj—0

22By the way, the double integral is a number.
23The symbol “dA” indicates that we are considering a little piece of area.

Z4Notice that the double integral and the definite integral have essentially the same definition. As
soon as you come to terms with the definition of the definite integral, then you also make sense of
the double integral.

251 only marked points (x},y}) in a few of the rectangles; but you get the idea: one picks a point
(x7,yf) in each of the n = 21 rectangles.
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In the first application we take f(x,y) = 1 for all (x,y) and since f(x,y) is 1 and
we multiply f(x,y) times dA; we do not even have to write 1dA it is good enough
to just write dA.

First Application of the double integral: AREA. If R is a region in the xy-plane,

then
// dA = the area of R.
R

I hope you say, “YES, that is obvious.” We have chopped R into small rectangles;
computed )’ A; (which is the area of an approximation of R) and then we took the
limit as the approximation of R approaches R.

Of course, one might complain, “Big deal. I can use the definite integral to
compute area. Why should I bother with this double integral?”” The answer is clear.
When one sets up a definite integral to calculate area, one must be very fussy: this
is the top, this is the bottom, these are the sides. There is no fuss to write:

“If R is a region in the xy-plane, then

// dA = the area of R.”
R

(On the other hand, one has to examine R before one can calculate [[,dA.)

Second Application of the double integral: Volume. If S is a solid in 3-space
with base equal to R, which is a region in the xy-plane, top given by z = #(x,y) on
or above the xy-plane, and straight sides, then

// t(x,y)dA = the volume of S.
R

I put a picture of the second application on the next page.

I hope that it is clear why the second application works. We have partitioned the
base of S into n rectangles for some number n. We are approximating the solid S by
a n three-dimensional blocks. The i block has a rectangular base with area A; and
has height #(x},y7); so the volume of the i block is

t(x], ) A

The exact volume of the approximation is
n
Y 10 37w
i=1

To get a better approximation of S, use more blocks, making each base smaller. The
limit of this process (if it exists) is the volume of S.

I promised a picture of the second application of the double integral. This picture
is on the next page.
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Third Application of the double integral: Volume, but less fussy. Let S be a solid
in 3-space with top given by z = #(x,y) and bottom given by z = b(x,y). Suppose
that R is a region that is parallel to the xy-plane and is a representative cross section
of S. Then

//R <t(x,y) —b(x,y)>dA = the volume of S.

e I put a picture of the third application of the double integral on the next
page.

e Of course, the second application is the special case of the third application
with b(x,y) = 0 for all (x,y) and R is IN the xy-plane not merely parallel
to the xy-plane. Once you make sense of the third application, it is not
necessary to also store the second application in your head.

e The third application makes sense because we approximate the solid with n
three-dimensional rectangular blocks. We have partitioned the cross section
R of S into n rectangles, for some n. The area of the i-cross sectional
rectangle is A; and the height of the i block is the z-coordinate at the top
minus the z-coordinate at the bottom:

t(x;'kvy;'k) _b(x;'kay:ﬁ%

for some (x},y7) in the i rectangle. The volume of the i™-block is

(11, 39) = bl ) ) A

The volume of the approximation is exactly

n

Y, (x7.) — bl i) )

i=1
To get a better approximation of S, use more blocks, making each A; smaller.
The limit of this process (if it exists) is the volume of S.

e If the third application of the double integral is still too fussy for your taste,
soon we will have triple integrals and we will write “If S is a solid in 3-
space, then [[[¢dV is the volume of S.” This looks like a big deal, but we
will still have to understand S in order to calculate [f[;dV.

The next page contains the promised picture of Application Three of the double
integral.
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How to compute double integrals.

Let R a region in the xy-plane. We fill R using either vertical lines or horizontal
lines.

If we fill R using vertical lines, then

(17.0.1) //Rf(x,y) dA = /ah (/hz:)f(x,y)dy) dx.

Look at the next page to see that the vertical line x = a is the left side of R,
the vertical line x = b is the right side of R, the curve y = #(x) is the top of R and
the curve y = b(x) is the bottom of R. The integral on the left side of (17.0.1)
is called a double integral; the integral on the rights side of (17.0.1) is called an
iterated integral. When one computes the iterated integral in (17.0.1), one computes
the inner integral first; one holds x constant and integrates the inner integral with
respect to y; then one plugs #(x) and b(x) in for y. At this point, one is left with an
ordinary definite integral of the form

b
/ some function of x dx,
a

which one computes to get the answer, which is a number.
Everything looks different if one fills R using horizontal lines. We will do that
after the picture on the next page.
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Let R a region in the xy-plane. If we fill R in using horizontal lines, then

(17.0.2) //Rf(x,y) dA = /Cd </Z(ry()y)f(x,y)dx) dy.

Look at the picture on the next page to see that the horizontal line y = c is the
bottom of R, the horizontal line y = d is the top of R, x = /(y) is the left side of R,
and x = r(y) is the right side of R.

When one computes the iterated integral in (17.0.2), one computes the inner in-
tegral first; one holds y constant and integrates the inner integral with respect to x;
then one plugs r(y) and £(y) in for x. At this point, one is left with an ordinary
definite integral of the form

d
/ some function of y dy,
C

which one computes to get the answer, which is a number.
The next page is the picture which is associated with filling the region R using
horizontal lines.
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I have many comments.

e Of course, in practice you have to decide if you want to fill R using vertical
lines or horizontal lines.

e You might have to partition R into pieces and then attack each piece sepa-
rately.

e Sometimes, there is an advantage to using one orientation rather than the
other orientation because you can do the problem in one piece rather than
several pieces.

e Sometimes, there is an advantage to using one orientation rather than the
other orientation because you can actually do one of the integrals, but you
are not able to do the other integral!

e If there are variables on your outer integral, then your answer is wrong!

e [f all four limits on your integral signs are numbers, then you are integrating
over a rectangle. If you are supposed to integrate over a rectangular, that is
great. But if R is more complicated than a rectangle, then you have made a
mistake.

e In all cases, you have to sketch R. It is impossible to set up a double
integral correctly unless you have a sketch of R. You have to look at R and
say, “I will fill R with vertical lines.” or “I will fill R with horizontal lines.”

e In first semester calculus you might have found area using both

/a bf (x)dx and /C dg(y)dy-

The game we play with filling R with either vertical or horizontal lines is
very similar to game of deciding if one wants to find the area of a region
using [dxor [ dy. If you were good at it before. You will be good at it now.
If you weren’t any good at it before, well now you have another chance.

e Nobody actually puts parentheses in the iterated integral | Cd < [ ér((yy)) f(x, y)dx) dy.
Everyone simply writes [ Cd / gr((yy)) f(x,y)dxdy

Example. The is problem 46 in 15.2. Integrate &nz fez} dxdy and do the same

problem with the order of integration reversed.2

20There are times that one can not do the original integral; but one can do the integral after the
order of integration is reversed. This is not a problem like that. We are asked to exchange the order
of integration to practice the technique so that we can do it when we need it. But as a bonus, we
get to do the problem a completely different way. If we get the same answer both times, there is a
good chance we did both problems correctly. If we don’t get the same answer both times, then it is
absolutely certain that at least one of our answers is wrong. There is another reason to learn how to
reverse the order of integration: If you can reverse the order of integration, then you have mastered
the technique. You will be able to do any problem you are asked to do. On the other hand, if you
are unable to reverse the order of integration, then your understanding of double integrals is very
shallow; you are not likely to be able to do a typical problem.
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First of all,
In2

In2 p2 In2 In2
/ / dxdy:/ x dy:/ (2—-€&)dy=(2y—¢)
0 Jer 0 o 0 0
= (2In2—¢"?) — (2(0) —€®) =2In2 -2+ 1=|2In2—1|

To reverse the order of integration we have to figure out what we have integrated

over. For each fixed y with 0 <y <1In2, our x has gone from x = ¢’ to x = 2. We
graph x = ¢” (which is the same as Inx = y) and x = 2 (which is a vertical line)

2

Of course, y = Inx passes through the point (1,0), has a vertical asymptote of the
negative y-axis, and grows very slowly when 1 < x. The two graphs intersect at
(2,In2). Study the next page to see that

In2 p2 2 rlnx
/ / dxdy = / dydx.
0 ey 1 JO

Be sure to notice that you must draw the graph in order to reverse the order of
integration.
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We finish the problem by computing

Inx

2 rlnx 2
/ dydxz/ y
1 Jo 1 7lo
2
:/ Inxdx
1

Use integration by parts to integrate Inx. Recall integration by parts:

/udv:uv—/vdu.

Take u = Inx and dv = dx. Calculate du = %dx and v = x. Thus

dx

/lnxdx =xInx— / dx=xInx—x+C.
By the way, this is correct. Indeed,
4 (xInx—x) =x(1) +Inx— 1 =1Inx.

Now we can finish the problem

2 rlnx 2 2
/ dydx:/ Inxdx = (xInx —x) 1 =2In2—-2—-(0—1)=|2In2—1.
1 Jo 1

Woo Hoo! This is the same answer as we got when we did the problem the other
way.

Example. The is problem 66 in 15.2. Find the volume of the solid that is bounded
above by the cylinder z = x> and bounded below by the region enclosed by the
parabola y = 2 — x? and the line y = x in the xy-plane.

I draw the top and the bottom separately; although it is not necessary to draw the
top. Use Application 2 of the double integral. The volume is

// topdA:// x> dA.
base base

It is necessary to draw the base before proceeding. (I also drew the top; but I did
not have to draw it. I only drew it for my own amusement.)
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Now we can finish the problem. The volume is

1 227 1 1
/ / x> dydx = / X2y dx = / <x2(2 —x?) —xzx) dx
—2Jx -2

2—x2
x -2

[ o= (F-5-5)]
G5 )

Example. This problem is 15.2, number 68. Find the volume of the solid in the
first octant’” which is bounded by the coordinate planes, the cylinder x2 4 y? = 4,
and the plane z+y = 3. I think of the problem as a transition problem from sections
15.1, 15.2, and 15.3 to section 15.4. It is not hard to set up the double integral and
it is “possible” to do the integral; but in order to do the integral, one has to use
trig substitution. On the other hand, it is very easy to do the integral using polar
coordinates; so that is what we will do. It turns out that polar coordinates is the
topic of 15.4. We will do a sneak preview in this problem.

We get started in rectangular coordinates. I want you to see where the difficulty
arises.

I drew the solid on a near by page. We can use Application 2 of the double

integral. The volume is equal to
/ / top dA.
base

Look at the picture. We fill the base using horizontal lines and see that the volume
is equal to

/()2/0\/@(3—}’)0,’)661)’:/()2(3—y)x’(;/4__y2dy:/02(3_)))\/4_—y2dy

2
:/ (3 4—y2—y 4—y2)dy.
0

THERE IS NO DIFFICULTY in finding
/ —yvV/ 4 —y2dy.

Just use ordinary substitution. Let u = 4 — y?; so, du = —2ydy. (So %du = —ydy. 1
can put the % where ever I want.) Thus

/—y\/4—y2dy: T Vudu+C =123 +Cc=14-y)3 2+
By the way, this is correct because

£ (5@ —2) = (22 = /a2,

2TThe first octant in 3-space is the one eighth of 3-space where the x, y, and z coordinates are all
non-negative.
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as desired. Thus, the volume is
/3\/4 ydy—|— (4—y 3/2’

Unfortunately, one must use Trig substitution to compute [ /4 —y2dy. I pro-
pose that we avoid doing Trig substitution and we switch the problem to polar co-
ordinates instead. In polar coordinates, x = rcos0 and y = rsin0. We fill the base
using straight lines which emanate from the origin. For each fixed angle 0, with
0 <6< 7%, rgoes from 0 to 2. In polar coordinates, the base is

n/2 2
b

(See the picture on the next page.) Of course, 3 —y becomes 3 — rsin6. This one
is not obvious:

0

’dxdy becomes rdrdo.

The reason is when one does a change of variables in an integral one has to account
for the chain rule. We are very used to du = d”dx when one only has one old
variable and one new variable. When we switch from rectangular coordinates to
polar coordinates, we must deal with four partial derivatives. One puts them in a
matrix; takes the determinant; and then takes the absolute value. The upshot is

’dxdy becomes rdrd®. ‘

If that was too vague, we will do it again in 15.7. The general case is in 15.8 (but
we probably will not cover it.) At any rate, the volume is

n/2 2 n/2 2
/ / (3—rsin®)rdrdd = / / (3r — rsin®) drd
0 0 0

n/2 /2 8
_/ T——sm@)‘ fn/z( —%sine)d6:<6e+§cose>)o = 37T—§-

All pictures are on the next page. There is a picture of the solid, a picture of the base
filled with horizontal lines, and a picture of the base filled with radial lines.
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18. Section 15.4. Double integrals in polar coordinates.

We did problem 60 from Section 15.2 as the last example in Sections 15.1-15.3.
To do the integral in rectangular coordinates we would have had to use trig substi-
tution. We decided to use polar coordinates instead. The point is that by switching
to polar coordinates, we got an EASIER problem. Sometimes, actually, it is
impossible to do an integral in rectangular coordinates, but fairly routine to do the
integral in polar coordinates. To integrate over a region in polar coordinates one
fills the region with line segments that live on lines passing through the origin.

The region in question has four boundaries:

9:907 e:ela I":fl(e), and r:f2(6>?

where 0y < 0; are fixed numbers and f1(0) < f»(0) are functions. There is a big
picture on the next page. One thinks, “For each fixed 6 with 0 between 6¢ and 01, r
goes from the littlest value of r for that angle 6, namely f;(0), to the biggest value
of r for that angle 6, namely f>(0). (Notice that when 6 is fixed and one draws r
from f1(0) to f2(0), then one is drawing at a line segment that lives on a line which
passes through the origin.)

There is no trouble converting x and y into polar coordinates:

x=rcos® and y=rsinb.

There is one other issue, namely what does dxdy (or dydx) become. The answer
is

’dxdy (or dydx) becomes rdrd0 ‘

If you are satisfied, fine. If you are grumbling, “Where did that r come from?”, then

I will give an answer. 1 do not claim that I am giving the complete answer, but I
hope that I give enough that the skeptical students think, “Well that is plausible.”
The next page is a pretty picture. We continue with the discussion of

dxdy =rdrd0

after the picture.
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I am giving some context for the fact dxdy = rdrd0. One does change of vari-
ables when one does the single integral. The process is called substitution. If
one makes a substitution, u = u(x), then one also replaces dx using the formula
du = Z—de. If we start with an integral in terms of x and y and we change to new
variables u and v by way of x = x(u,v) and y = y(u,v), then there are 4 partial
derivatives to think about. We put the four partial derivatives into a matrix, we take
the determinant, then we take the absolute value:

ox  odx
(18.0.1) dxdy =134 9v||dudv.
du ov
In particular, when x = rcos0 and y = rsin®, then formula (18.0.1) becomes
dx  dx o
dxdy=1|3 | |arde =<0 ~5001 116 — rcos?0 + rsin?6|drde
a_i % sin® rcosO

= |r(cos? @ +sin’0)|drd® = |r|drd6 = rdrds.
We use the version
dxdy =rdrd0
here. In section 15.7 we use the version
dxdydz = p*sinddpddde.

for the switch from rectangular coordinates to spherical coordinates for triple inte-
grals. Equation (18.0.1) is the content of section 15.8 and is very useful.
Now we do three examples.
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0 pvi1-x? 2 2
Example 1. Compute / / " dydx.
~1Jo

None of us can integrate [ e’ dy! So this is a trick problem! We recognize that
x%> 4+ y? = 2 in polar coordinates. We also recognize that y = v/1 —x2 is part of
the circle x*> +y> = 1. (Notice that y = v/1 —x2 is the part of the circle x>+ y? = 1
where y is positive. Thus, y = v/1 —x2 is the upper semi-circle.) Lets switch to
polar coordinates.

We draw the region on the next page. For each fixed x, with —1 < x <0, y goes
from the x-axis (also known as y = 0) to the upper part of the circle x> +y? = 1.
When we view this region in polar coordinates, we think, for each fixed 6 between
0 =7 and © =7, r goes from 0 to 1.

0 ,vV1-x2 2 2 i 1 2
/ / &y dydx:/ / re’ drd6
-1J0 n/2J0

To integrate [ re” *dr you probably let u = r2. In this case, du = 2rdr and
/rerzdr —(1/2) /e“du —(1/2)¢" +C = (1/2)¢" +C.
(Of course, one can check this in one’s head.) The original integral is

L ot 1" _(e=1) v (e—1) T\ |(e—1)m
2 S 0= 2 f e V8= 570 = (7 2)_ ‘

The picture is on the next page.
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Example 2. Find the area inside x> +y* = 1.

This is a silly problem. The area inside a circle of radius r is wr2. Our circle has
radius 1; so the area inside it is .

To find this answer in rectangular coordinates is a nuisance. I drew the picture
on the next page (look at the second picture).

1 V122 1 1—x2 1 1

area:/_1 /_mdydxz/_ly‘%dx:/_l V1-x2— (=1 —xz)dx:Z/_1 V1 —x2dx
To do this integral, I have to make a Trig substitution. ugh.

On the other hand, the integral is easy in polar coordinates. Now look at the top
picture on the next page.

2t rl 27 7‘2
area:/ / rdrd@ :/ —
o Jo 0o 2 0

There was no effort involved and we got the right answer.
The picture is on the next page.

27'51 1 ‘27'5

1
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Example 3. This is problem 19 from section 15.4. Compute

In2 4/ (In2)2—y2
/ / eV Xy dxdy.
0 0

I do not know if T can compute [ e\/)ry2 dx. If T were trying to do it, I would
first let x = ytan®. Then I would calculate that dx = ysec?0d0. I am not eager to
see if I could finish the problem using this approach.

I do notice that x = /(In2)2 — y2 is just the part of the circle

x> +y* = (In2)?
where x is positive. This is the right half of the circle. The circle in question
has radius In2. For each fixed y between y = 0 and the top of the circle (that is,
y =In2), x goes from x = 0 (that is the y-axis) until x = 1/ (In2)2 — y2, (that is the
right boundary of the circle.) The integral is taken over the first quadrant of a circle
of radius In2. There is a picture on the next page.

In polar coordinates, one fixes 6 between 6 = 0 and 0 = % For each such 0, r
goes from 0 to In2. Of course, y/x% +y? = r and the original integral becomes

% In2
/ / re" drdo.
0 0

Use integration by parts to integrate [ re’dr. Recall that integration by parts is

/udv:uv—/vdu.

We take u = r and dv = ¢ dr. We compute du = dr and v = ¢’. Thus,

/rerdrzrer—/erdr:rer—er.

(It is easy to check in one’s head that the derivative of re” — e” really is re”.) Our
integral is

(2In2—1)x

In2 3
" de:/2(21n2—2+1)d6:(21n2—1)6‘ ==
0

3
re’ —e”
| e =en);

The picture is on the next page.
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19. Section 15.5. Triple integrals.

The triple integral, the double integral, the definite integral of first semester cal-
culus, and the line integral of chapter 16 (alas, we will not get there) are all defined
the same way. See the beginning of section 17 on page 100 for the definitions of
the definite integral and the double integral. I will now define the triple integral.

The definition of the triple integral. Let S be a solid in 3-space and let f(x,y,z)
be a function defined on S. Use planes parallel to the xy-plane, the xz-plane, and
the yz-plane to partition S into many small rectangular, three-dimensional boxes.
Number the boxes from 1 to N. For each integer i with 1 <i <N, let (x],y?,z7) be
a point in box; and let A; be the volume of box;. Then

v =
//Sf(x,y,z) all A; gotozerozf l,y”Zl

Application 1 of the triple integral. If f(x,y,z) = 1 for all points (x,y,z), then
// dV = the volume of S.
s

I hope this is obvious. We chopped S into a bunch of little boxes. We found the
volume of each box. We multiplied the volume of each box by one. We added all
of the products

1 times the volume of box;.

Then we took the limit as we made more and more boxes allowing the size of each
box to become arbitrarily small. Any given one of these sums is exactly the volume
of some approximation of S. As the boxes get smaller our approximation gets better.
What we gain here is ease of notation rather than amazing computational ability.
We can find volumes using double or single integrals but we have to work hard to
describe what we are doing. It is hard to imagine anything easier to write than

// dV = the volume of S.
S

Of course, to actually figure out how to calculate [[[;dV, we will have to think
about what § actually looks like.

Application 2 of the triple integral. If 3(x,y,z) is the mass density the solid S at
the point (x,y,z), then

// d(x,y,x)dV = the mass of S.
N

Our solid is more dense at some spots than at other spots. If we want to ap-
proximate the total mass of the solid, we would probably chop the solid into many
pieces, pretend the density is constant on each piece, calculate the pretend-constant
density times volume to compute the mass of each piece, then add up the approxi-
mate masses of the pieces.
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If we wanted a better approximation, we would make more pieces and insist that
all pieces are smaller than they used to be.

To set up a triple integral: Pick a representative cross-section and:

e Suppose R is a representative cross section of the solid S with R parallel to the
xy-plane. Let z =1(x,y) be the top of S above the point (x,y) € R and z = b(x,y) be
the bottom of S below the point (x,y) € R. Then28

JJ[[fexnzav = //(/ xy,z)dz>d,4_

See the top picture on the next page.

e Suppose R is a representative cross section of the solid S with R parallel to the xz-
plane. Let y = r(x, z) be the right-most point of S to the right of the point (x,z) € R
and y = ¢(x,z) be the left-most point of S to the left of the point (x,z) € R. Then

[ffesar = [ ([ ssm) aa

See the middle picture on the next page.

e Suppose R is a representative cross section of the solid S with R parallel to the
yz-plane. Let x = fr(y,z) be the front point of S in front of the point (y,z) € R and
x = b(y,z) be the back point of S to behind the point (y,z) € R. Then

// Fx,y,2)dV = //(/ﬁﬂ xy,z)dx)dA.

See the bottom picture on the next page — but I had enough trouble drawing the
front, I did not even try to draw the back.
Please notice that the inner integral is always
/the largest value of the variable
t!

he smallest value of the variable '

That is why the integral is bottom to top, left to right, and back to front.
As promised, the next page consists of three pictures.

280f course, nobody ever puts parentheses in an iterated integral. I only did it here to draw your
attention to how I am doing things.
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Example 1. This is problem 42 from 15.5. Compute

1oplopl X
/ / /2 12xze®” dydxdz.
0 JO Jx

ACK!! None of us can compute [ 26’ dy. (If you think you can do it, you are
wrong. Please take the time to figure out what you are doing wrong.) This is yet
another trick problem. I visualize the problem as fol (some double integral)dz. The
given problem integrates by filling up the region for the double integral by using
vertical lines. I wonder if switching to horizontal lines will help. The given integral

1ol X
/ / 12xze® dydx
0 Jx?

fills the region by thinking for each fixed x with x between 0 and 1, y goes from the
parabola y = x? to the horizontal line y = 1. If we use horizontal lines to fill this
region, then we say for each fixed y with y between 0 and 1, x goes from the y-axis
(which is x = 0) to the parabola (which is x = ,/y). You must draw a picture to see
this. My picture is on the next page.

At any rate,

1,1 gl ) 1l o,y )
/ / / 12xz¢® dydxdz = / / / 12xze®" dxdydz.
0 Jo Jx 0o Jo Jo

Now at least we can do the first integral!

1,1 2 5
the problem = / / 12 (x_) ZeZy2 ‘\[dydz
0 Jo 2 0

1ol X
= / / 6yze® dydz.
0 JO

We can do the second integral! Let u = zy*>. Compute du = 2zydy.
/6yze2y2dy = /3€”du —3e" +C =37 1.

Check in your head that the partial derivative of 3697 with respect to y is 6yzezy2.
So
1 1 1 1
the problem:/ 3¢9 ‘Odz =/ (3¢*—3)dz=(3¢"—3z) 0= (3¢e—3)—(3-0) :m.
0 0
As promised, the picture is on the next page.
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Example 2. This is problem 15.5 number 36. Find the volume of the region
bounded in the back by the plane x = 0, on the front and sides by the parabolic
cylinder x = 1 — y?, on the top by the paraboloid z = x> + y2, and on the bottom by
the xy-plane.

I drew what I can draw on the next page. The volume is

top 4y 242
// / dzdA — / / dsz:// : dA:// (2 +y%)dA
base J/bottom base /0 base base

You have to draw the base to set up the double integral. (My picture continues to
be on the next page.) I fill the region with horizontal lines. For each fixed y with
y between —1 and 1, x goes from the y-axis (which is y = 0) to the parabola. The
volume is equal to

1 pl—y? 1 /3 1—y? 1 1_y23
/_/ (x2+y2)dxdy=/_l(§+xy2)‘0 dy:/_l(%ﬂl—yz)yz)dy

—3y? +3 —y0 1 /!
—/ ( Y +y2—y4) dy:5/_1(1—3y2+3y4—y6+3y2—3y4)dy

e D)4 ()

As promised, there is a picture on the next page.
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20. Section 15.7. Triple integrals in cylindrical and spherical coordinates.

The purpose of this lecture is to make some integrals that would be hard or im-
possible easier.

You already know cylindrical coordinates; they are r, ©, and z. Of course, dxdydz
in some order becomes rdzdrd6 in some order. We will do some problems in
cylindrical coordinates, but there is no new lecture about them.

Spherical coordinates are probably new to you. The spherical coordinates are p,
0, and 0. The coordinate p is the distance from the origin to the point. (So p =2 is
the sphere of radius 2 with center at the origin.) The coordinate ¢ is the angle from
the positive z-axis to the line segment joining the point to the origin. (So, ¢ =0 is
the positive z-axis; ¢ = ¥ is cone; ¢ = 7 is the xy-plane, ¢ = %‘ is an up-side-down
cone, ¢ = T is the negative z-axis.) In fact, ¢ only makes sense for 0 < ¢ < w. Of
course 0 is the same 0 as in polar coordinates. I drew pictures of ¢ equal to various
constants on the next page.

We know how to convert back and forth between rectangular coordinates and
cylindrical coordinates. To convert back and forth between cylindrical coordinates
and spherical coordinates draw a right triangle as shown on the next page. Label
the top side (which is the opposite) r; label the left side (which is the adjacent) z;
label the hypotenuse p; and label the angle ¢. I drew this triangle on the next page.

We see that

22 =p?
z=pcosd
r=psind

It follows that
dxdydz = p*sinddp dode.
To give more of the story; if you care. The conversion between rectangular
coordinates and spherical coordinates is given by

X =rcos® =psindcosO
y=rsin@ = psinsind
z=pcosd
I will write more about this conversion from rectangular coordinates to spherical

coordinates after the picture.
The next page has the promised picture.
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The change of coordinates formula for integrals is given as formula (18.0.1) on

page 125:
dx OJx Ox
d J0 8
dy dy 9
dxdydz = | % % S| dpdode.
dz dz 9z
dp o0 8

If you make the calculation, you will get
dxdydz = p?sinddp do de.

Example 1. Find the volume inside x> + y? 4 z> = a” and above the xy-plane. Of
course, the problem is silly. The equation x> +y”> 4+ z> = 4 is a sphere of radius

a. The volume of a sphere is %n(radius)3. Our region is one half of the sphere and

214’

3
informative to see how the various methods of integration work on this problem.

the radius is a. So the answer to our problem is . Nonetheless, it surely is

Rectangular coordinates. Forget it. It is much too hard.

Cylindrical coordinates. I put the picture on the PREVIOUS page. The volume is

top 2% ra
// / dzdxdy = // \/az—xz—yzdxdy:/ / rva*—rtdrdo.
base /0 base 0 0

To compute [ rva2 — r2dr, let u = a> — r*. Calculate du = —2rdr; so
1 12 —1
(20.0.1) /r\/az a4y — —5/u1/2du e e L

A quick check shows that this is correct. So, the volume is

—1 (2" 5 53 1 = 1 5 120 | 2na®
=— — do =~ do=—-a'0| =
3 Jo (@*=r) ‘0 3/0 . 37 %o 37

as expected.

Spherical coordinates. For each fixed 0 and 0, p goes from 0 to a. Of course, ¢ can
be any number between 0 and %, and 0 < 6 < 27@. Thus, the volume is

2n rm/2 pra 2n /2 p3
/ / / pzsinq)dpdq)dez/ / P
o Jo 0 o Jo 3

2 43
:/0 —?COS(D

Example 2. Find the volume of the solid below x> +y*> 4+ z> = 1 and above the top

part of x* +y? = 2%,

a 2n rm/2 43
sinq)a’q)dG:/ / © inodode
0 o Jo 3

2n 2143
0 3

/2 2n a3 a3
do = ———(0—-1)d6=—6
0 /o 3( ) 3

Again, the problem is too hard in rectangular coordinates.
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Spherical coordinates. This problem is easiest in spherical coordinates. Notice that

the sphere x> +y? 4 z> = 1 is merely p = 1 spherical coordinates. Notice also that
the cone x> 4+ y? = 72 is > = 7% or z = +r. The problem says that we are interested
in the top part of z = =£r, so we are interested in z = r. Look at the picture that
relates r, z, p, and ¢. When r = z, the triangle is an isosceles right triangle and
¢ = 7. (See the picture on the last page.)

For each fixed 0 (with 0 < 0 < 21) and each fixed 9 with0 < ¢ < T 7> p goes from

0 to 1. The volume of the solid is

2n ,m/4 ,l 2n rm/4 p3 1 2n rm/4q
/ / / p2s1n¢dpd¢de=/ / P sing| d¢de:/ / " sinddodo
o Jo 0 o Jo 3 0 o Jo 3

71:/4 _/2n1<_£ 1) de:z_\/iezn_ 2-V2)n
6

2751
3=

cos ¢

0o 3

Cylindrical coordinates. We can do the problem in cylindrical coordinates. It is a
little harder; but it does work. At any rate, the volume is

top
Il [ dean
the fattest cross section J/ bottom

The fattest cross section is the intersection of the sphere (x> +y>+z> = 1) and
the cone (x2 + y2 = zz); namely, the intersection of 2472 =1 and r* = z2. The

intersection is the circle % + r? = 1 with z = r. The intersection is r = \/Li and

7= % Of course, the top is z = v/1 — r? and the bottom is z = r. (These graphs
are labeled in the bottom picture on the last page; but they are the same graphs as
appear in the top picture with x> +y*> now written as 2.)

The volume is

/zn/ /lrrdzdrde /m/f

Look at (20.0.1) on page 141 to see that [rv/1 —rZdr = 3L(1—r?)32+C. The

volume is /02”(%1(1 s r3>
T R
onK 272 321/5))+%}d6/02n E_%] o

= {g_#} o ;(1—\?)%.

We are very pleased to see that we got the same answer as we got when we did the

0

\I—l

problem the other way. There are pictures on the next page.

V1i—2 21
" drdo— / /” 1—r—r>drd9.
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21. Substitution in double and triple integrals.

Fact 21.1. If x = x(u,v) and y = y(u,v), then

/ / fxy)  dxdy
R written with respect to x,y S~~~

in some order

ox  Odx
= x(u,v),y(u,v U qv dudv
//R written with respect to u,v f< ( 7 )7)}( ’ ))‘ §_i gy ‘

V| in some order

(The big ‘ ‘ means determiant and the little | | means absolute value.)

Examples 21.2. (a) In first semester if you are supposed to compute f; f(x)dx, but
you decide to use a different variable u, you figure out what x = x(u), and you

compute
dx

x\u
/Iwrittenintermsofuf( ( ))du

(There is no absolute value in first semester calculus because when you change

du.

I from x-coordinates to u-coordinates it is easy to just integrate from big to little
in u coordinates. That is [ 12 V35 —xdx = — [} \/udu, when u =5 — x. It is harder
to know exactly what to switch when one does a substitution in double or triple
integrals.)

(b) The switch to polar coordinates from rectangular coordinates is

// fx,y)dxdy = // f(rcos®,rsin®)d0dr
R R in polar coordinates

Of course,
o

o
|$ $|:r.
200 or

(c) The switch to spherical coordinates from rectangular coordinates is

Jl] ) gtz

in some order

dx  dx  ox

25
= //// _ ~ f(psingcos®,psingsin®,pcoso)| % ﬁ S|l dpdode
in spherical coordinates 0z 9z 9 N —

z | .
op 00 06| insome order

The Jacobian

dp 00 08

12 & %
p

dz dz Oz
dp J0 06

turns out to be p>sin¢. A picture explaining the conversion of rectangular co-
ordinates to spherical coordinates is on the next page.
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) P S
Example 21.3. Find the area inside ;‘—2 + Z—z =1.
Let u =7 and v = %. In u,v coordinates the region becomes the area inside

u? +v? = 1. This is a circle of radius 1. The inside this circle is 7t(radius)? = 7.

.. 2 2 .
Let R be the area inside ;‘—2 + Z—2 =11is

dx  dx
1 dxdy :// ||du dvi|  dudy
/ /R SN~ R in uv-coordinates ﬁ d_z . ~
in some order in some order
Write au = x and bv = y to compute the Jacobian.
a 0
= / / | 0 b |  dudy
R in uv-coordinates —~

in some order

abdudv :.

/the circle of radius 1 with center (0,0)

Example 21.4. Use the transformation

u=x+2y and v=x—y

2/3 2-2y
/ / (x+2y)e* *dxdy.
0 Jy

First we solve for x and y, so that we can calculate the Jacobian

to calculate

ox  Ox
13 3
du v

Observe that u —v = 3y; so % =y. Observe also that u + 2v = 3x; so ”ngv = x.

Now we compute

x a1 2 .
13 gli=117 5,1=1-31=4
ou dv 3

We see that the original integral is taken over the following region. For each fixed
y,with0 <y < % x goes from y to 2 —2y. So the original region is the triangle with
boundary x =y, x =2 — 2y, and y = 0. The vertices are (0,0), (%, %), and (2,0):



The he§ron 0]0* the ot’uf;iml fri"/(j"‘?‘
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(The point (%, %) is the intersection of the lines x =y and x =2 — 2y.)

Observe that x = y becomes %ZV =P oru+2v=u—vorv=0in the new
variables u, v.

Observe that x = 2 — 2y becomes %ZV =2-2%Yoru+2v=6—2(u—v)or
3u = 6 or u = 2 in the new variables u, v.

Observe also, that y = 0 becomes “5* = 0 or u = v in the new variables u,v.

The old vertices (x,y) equals (0,0), (%, %), and (2,0) are sent to (u,v) equal
(0,0), (2,0), and (2,2), respectively.

In (u,v) coordinates, we integrate over:
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To integrate over the domain in uv-coordinates, first fix u with 0 < u < 2. For
each fixed u, v goes from O to u.
The original integral is equal to

1/2/14 *Vd J 1/2 .
— ue vadu —= — —ue
3Jo Jo 3Jo

1 2
= §/0 (—ue ™ +u)du
L,

u

du
0

= —(ue ”-I—e_”-l—u—z)‘z See (21.4.1).
3 270
1

_5(2e Zre?42-1)
1. 2

(21.4.1) We used integration by parts to see that /—ze_zdz =ze ‘+e *+C.



