15.7, number 79: Find the volume of the solid region enclosed by the cylinder $x^2 + y^2 = 4$ and the planes z = 0 and y + z = 4.

Answer: The volume is equal to the integral over the base of the top. The top is z = 4 - y. In polar coordinates the top is $z = 4 - r \sin \theta$. The base is everthing inside the circle $x^2 + y^2 = 4$ in the *xy*-plane. In polar coordinates that is: for each fixed θ with $0 \le \theta \le 2\pi$, r goes from r = 0 to to r = 2. Thus, the volume is

$$\int_{0}^{2\pi} \int_{0}^{2} (4 - r \sin \theta) r \, dr \, d\theta$$

= $\int_{0}^{2\pi} \int_{0}^{2} (4r - r^{2} \sin \theta) \, dr \, d\theta$
= $\int_{0}^{2\pi} (2r^{2} - \frac{r^{3}}{3} \sin \theta) \Big|_{0}^{2} d\theta$
= $\int_{0}^{2\pi} (8 - \frac{8}{3} \sin \theta) \, d\theta$
= $(8\theta + \frac{8}{3} \cos \theta) \Big|_{0}^{2\pi}$
= $16\pi + \frac{8}{3} - \frac{8}{3} = \boxed{16\pi}$