15.5, number 33: Find the volume of the region between the planes

$$x + y + 2z = 2$$
 and $2x + 2y + z = 4$

in the first octant.

Answer: We drew the picture on the next page. From our drawing we read that the volume is equal to

$$\begin{aligned} &\int_{0}^{2} \int_{0}^{2-x} \left(\left(4 - 2x - 2y\right) - \frac{2 - x - y}{2} \right) dy \, dx \\ &= \int_{0}^{2} \int_{0}^{2-x} \left(3 - \frac{3}{2}x - \frac{3}{2}y\right) dy \, dx \\ &= \int_{0}^{2} \left(3y - \frac{3}{2}xy - \frac{3}{4}y^{2}\right) \Big|_{0}^{2-x} dx \\ &= \int_{0}^{2} \left(3(2 - x) - \frac{3}{2}x(2 - x) - \frac{3}{4}(2 - x)^{2}\right) dx \\ &= \int_{0}^{2} \left(6 - 6x + \frac{3}{2}x^{2} - \frac{3}{4}(2 - x)^{2}\right) dx \\ &= \left(6x - 3x^{2} + \frac{1}{2}x^{3} + \frac{1}{4}(2 - x)^{3}\right) \Big|_{0}^{2} \end{aligned}$$

Of course, I made a substitution when I calculated the anti-derivative of $(2-x)^3$. I let w = 2 - x; so dw = -dx.

$$= 12 - 12 + 4 - 2 = 2$$

Picture 15,5 Number 33

$$\chi_{ty} + 32 = 2$$
 intersects the X-aris of (2,0,0)
into sects the Yaris of (0,2,0)
intersects the Yaris of (0,0,0)
 $2\chi_{t} + 3\chi_{t} + 2ze$ intersects the Karis of (2,0,0)
 $\chi_{t} + 3\chi_{t} + 2ze$ intersects the X-aris of (0,0,0)
intersects the Z-aris (0,0,0)
intersects the Z-aris (0,0,0)
 χ_{t}
We want the Volume of the region between the tab
Planes. We integrate Over $2\pi - \pi m^{2/2}$, We integrate
 $The value ob Z at(hs) on the larphone - the Value edg Zat(0,y) on the
 b then Plane
 $= (t_{t} - 2\lambda - 2y) - \frac{2 - \lambda - y}{2}$, $We = 2 - x$
Fill the triangle with vertical lites $\frac{1}{2}$
 $Vol = \int_{0}^{\infty} \int_{0}^{3-x} (f_{t} - 2\chi - 2g) - \frac{2 - x - y}{2}$ dy dx$