15.4, number 5: Describe the region (drawn on the next page) in polar coordinates.

Answer: Draw the line segment from the origin to the point $(2\sqrt{3}, 2)$. This line segment divides the region into two pieces. We deal with these pieces separately; we refer to these pieces as the lower piece and the upper piece.

All line segments, emanating from the origin, which touch the lower piece, start touching the lower piece when r = 1 and stop touching the lower piece when $x = 2\sqrt{3}$.

All line segments, emanating from the origin, which touch the upper piece, start touching the upper piece when r = 1 and stop touching the upper piece when y = 2.

Of course, $x = r \cos \theta$; so $x = 2\sqrt{3}$ when $r \cos \theta = 2\sqrt{3}$. In other words, in the lower piece $1 \le r \le \frac{2\sqrt{3}}{\cos \theta}$.

Similarly, $y = r \sin \theta$; so y = 2 when $r \sin \theta = 2$. In other words, in the upper piece $1 \le r \le \frac{2}{\sin \theta}$.

Now we know what the *r*'s are doing. We better figure out what the θ 's are doing. The cut off is the angle in the right triangle with opposite equal 2, adjacent equal to $2\sqrt{3}$. The Pythagorean Theorem says that the hypotenuse is 4. We are thinking about the angle whose cosine is $\frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2}$. So the cut off angle is $\frac{\pi}{6}$.

The lower region is described by saying "for all fixed θ with $0 \le \theta \le \frac{\pi}{6}$, r goes from 1 to $\frac{2\sqrt{3}}{\cos \theta}$ ".

The upper region is described by saying "for all fixed θ with $\frac{\pi}{6} \le \theta \le \frac{\pi}{2}$, r goes from 1 to $\frac{2}{\sin \theta}$ ".

Picture 15.4 Number 5

Original Picture

