14.7, number 13: Find all local maxima, local minima, and saddle points of $f(x,y) = x^3 - y^3 - 2xy + 6$.

Answer: We compute

$$f_x = 3x^2 - 2y$$

$$f_y = -3y^2 - 2x$$

$$f_{xx} = 6x$$

$$f_{xy} = -2$$

$$f_{yy} = -6y$$

We see that f_x and f_y are zero when both equations:

$$\begin{cases} 3x^2 - 2y = 0 \\ -3y^2 - 2x = 0 \end{cases}$$

are satisfied. Re-write the equations as

$$\begin{cases} \frac{3x^2}{2} = y \\ -3y^2 - 2x = 0 \end{cases}$$

and

$$\begin{cases} \frac{3x^2}{2} = y\\ -3(\frac{3x^2}{2})^2 - 2x = 0 \end{cases}$$
 (3)

The bottom equation from (3) is

$$\frac{-27}{4}x^4 - 2x = 0$$
$$27x^4 + 8x = 0$$
$$x(27x^3 + 8) = 0$$

So x=0 or $x^3=\frac{-8}{27}$. The number $\frac{-8}{27}$ has exactly one cube root; namely, $\frac{-2}{3}$. The system of equations (3) has two solutions; namely (0,0) and $(-\frac{2}{3},\frac{2}{3})$. We must deal with each of these critical points.

We apply the Second Derivative Test at (0,0):

$$(f_{xx}f_{yy} - f_{xy}^{2})|_{(0,0)} = 0 \cdot 0 - (-2)^{2},$$

which is negative; hence (0,0,f(0,0)) is a saddle point on the graph of z = f(x,y).

We apply the Second Derivative Test at $(-\frac{2}{3}, \frac{2}{3})$:

$$(f_{xx}f_{yy} - f_{xy}^{2})|_{(-\frac{2}{3},\frac{2}{3})} = 6(-\frac{2}{3})(-6)(\frac{2}{3}) - (-2)^{2} = (-4)(-4) - 4 = 12,$$

which is positive. Thus f has a local maximum or a local minimum at this point. Observe that $f_{xx}|_{(-\frac{2}{3},\frac{2}{3})}$ is negative. We conclude that $(-\frac{2}{3},\frac{2}{3},f((-\frac{2}{3},\frac{2}{3}))$ is a local maximum point of the function f. We conclude that

```
(0,0,f(0,0)) is a saddle point on the graph of z=f(x,y) and (-\frac{2}{3},\frac{2}{3},f((-\frac{2}{3},\frac{2}{3}))) is a local maximum point on the graph of z=f(x,y).
```