14.4, number 1: Consider $w=x^2+y^2$, $x=\cos t$, and $y=\sin t$.

- (a) Use the chain rule to calculate $\frac{dw}{dt}$.
- (b) First write w as a function of t directly, then compute $\frac{dw}{dt}$ using first semester calculus techniques.
- (c) Evaluate $\frac{dw}{dt}(\pi)$.

Answer:

(a) There is a tree on the next page which tells me that

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} = 2x(-\sin t) + 2y(\cos t)$$
$$= 2(\cos t)(-\sin t) + 2\sin t(\cos t) = \boxed{0}.$$

(b) We see that $w=x^2+y^2=\cos^2t+\sin^2t=1$. It follows that $\frac{dw}{dt}=\boxed{0}$.

(c)
$$\frac{dw}{dt}(\pi) = 0$$
.

Picture 14,4 Number 1

 $\frac{w}{x} = \frac{y}{t}$