13.3, number 9: Find the point on the curve

$$\overrightarrow{\boldsymbol{r}}(t) = (5\sin t)\overrightarrow{\boldsymbol{i}} + (5\cos t)\overrightarrow{\boldsymbol{j}} + 12t\overrightarrow{\boldsymbol{k}}$$

at a distance 26π units along the curve from the point (0, 5, 0) in the direction corresponding to increasing t values.

Answer: An object moving on the curve stands at the point (0, 5, 0) at time t = 0. We will find the distance traveled between time t = 0 and time $t = t_0$. (We take t_0 to be positive.) Then we will find the value of t_0 that makes the distance traveled by the object between t = 0 and $t = t_0$ equal to 26π . The answer is the position of the object at time equals t_0 .

The distance traveled by the object between t = 0 and $t = t_0$ is

$$\int_{0}^{t_{0}} |\overrightarrow{\mathbf{r}}'(t)| dt = \int_{0}^{t_{0}} |5\cos t\,\overrightarrow{\mathbf{i}} - 5\sin t\,\overrightarrow{\mathbf{j}} + 12\,\overrightarrow{\mathbf{k}}| dt$$
$$= \int_{0}^{t_{0}} \sqrt{25\cos^{2}t + 25\sin^{2}t + 144} dt$$
$$= \int_{0}^{t_{0}} \sqrt{25 + 144} dt$$
$$= 13t_{0}$$

The object has traveled 26π units, when $26\pi = 13t_0$. That is $t_0 = 2\pi$. The position of the object at time $t_0 = 2\pi$ is $(5\sin(2\pi), 5\cos(2\pi), 12(2\pi))$, which is

$$(0, 5, 24\pi)$$