
12.4, number 15: Let P = (1,−1, 2), Q = (2, 0,−1), and R = (0, 2, 1). Find

the area of the triangle determined by the points P , Q, and R. Also find

a unit vector perpendicular to the plane containing P , Q, and R.

Answer: The area of the triangle determined by P , Q, R is 1
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The area of the triangle is (1
2
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√
6 and a unit vector perpendicular to the

plane containing the triangle is
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