

PRINT Your Name: \_\_\_\_\_

There are 10 problems on 5 pages. Each problem is worth 10 points. SHOW your work. **CIRCLE** your answer. **NO CALCULATORS!** **CHECK** your answer whenever possible.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

If you would like, I will leave your exam outside my office door tomorrow morning, you may pick it up any time between then and the next class. **Let me know if you are interested.**

I will post the solutions on my website at about 4:00 PM today.

1. Find  $\int e^{2x+3}dx$ . Check your answer.
2. Find  $\int xe^{2x^2+3}dx$ . Check your answer.
3. If  $y = e^{(\frac{1}{x^3})} + \frac{1}{e^{(x^3)}}$ , then find  $\frac{dy}{dx}$ .
4. If  $y = \sin x \ln x$ , then find  $\frac{dy}{dx}$ .
5. Find  $\int \frac{\ln x}{x}dx$ . Check your answer.
6. Find  $\int \frac{e^x}{\sqrt{e^x+1}}dx$ . Check your answer.
7. Find the area of the region bounded by  $y = e^x$ , the  $y$ -axis, and the line  $y = e^2$ .
8. Let  $f(x) = \frac{x-2}{x+3}$  for  $x \neq -3$ . Find  $f^{-1}(x)$ . What is the domain of  $f^{-1}(x)$ ? Verify that  $f(f^{-1}(x)) = x$  for all  $x$  in the domain of  $f^{-1}(x)$ .
9. A bacterial population grows at a rate proportional to its size. Initially the population is 12,000 and after 6 days the population is 20,000. How long will it take the population to triple? (You may leave "ln" in your answer.)
10. Let  $f(x) = x \ln x$ . What is the domain of  $f(x)$ ? Where is  $f(x)$  increasing, decreasing, concave up, and concave down? Find the local maxima, local minima, and points of inflection of  $y = f(x)$ . Graph  $y = f(x)$ .