

Math 142 Exam 1 Fall 2002

PRINT Your Name: _____

There are 10 problems on 5 pages. Each problem is worth 10 points. SHOW your work. **CIRCLE** your answer. **NO CALCULATORS!** **CHECK** your answer whenever possible.

1. Find $\int \frac{e^x}{\sqrt{1-e^x}} dx$. Check your answer.
2. Find $\int 2^x + x^2 dx$. Check your answer.
3. If $y = e^{\frac{1}{x^2}} + \frac{1}{e^{x^2}}$, then find $\frac{dy}{dx}$.
4. Find the volume of the solid generated by revolving the region bounded by $y = e^x$, the x -axis, the $x = 1$ and $x = 2$, about the x -axis.
5. Let $f(x) = \frac{2x-1}{x+3}$ for $x \neq -3$. Find $f^{-1}(x)$. If you have time, verify that $f(f^{-1}(x)) = x$ for all x in the domain of $f^{-1}(x)$, and $f^{-1}(f(x)) = x$ for all x in the domain of $f(x)$.
6. If $y = \arcsin(2x^2)$, then find $\frac{dy}{dx}$.
7. Let $f(x) = \frac{x}{\ln x}$. What is the domain of $f(x)$? Where is $f(x)$ increasing, decreasing, concave up, and concave down? Find the local maxima, local minima, and points of inflection of $y = f(x)$. Find all vertical and horizontal asymptotes of $y = f(x)$. Graph $y = f(x)$.
8. Find the general solution of the differential equation $\frac{dy}{dt} + y = e^{-t}$. Check your answer.
9. Simplify $\sin[2 \arccos(\frac{2}{3})]$.
10. A bacterial population grows at a rate proportional to its size. Initially the population is 10,000 and after 10 days the population is 20,000. How long will it take the population to triple? (You may leave "ln" in your answer.)