

Math 142 Final Exam Fall 2004

PRINT Your Name: _____

There are 20 problems on 10 pages. Each problem is worth 10 points. SHOW your work. **CIRCLE** your answer. **NO CALCULATORS!** **CHECK** your answer whenever possible.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**. Otherwise, get your grade from VIP.

I will post the solutions on my website when the exam is finished.

1. Find $\frac{d}{dx} (xe^{x^2})$.
2. Find $\int xe^{x^2} dx$. Check your answer.
3. Simplify $\sin(2 \arccos(\frac{3}{4}))$.
4. Find $\int \sin^4 x \cos^3 x dx$. Check your answer.
5. Find $\int \sin^2 x dx$.
6. Find $\int \frac{x}{x^2 + 4} dx$. Check your answer.
7. Find $\int \frac{1}{x^2 + 4} dx$. Check your answer.
8. Find $\int \frac{1}{\sqrt{x^2 + 4}} dx$. Check your answer.
9. Let $f(x) = x \ln x$. What is the domain of $f(x)$? Where is $f(x)$ increasing, decreasing, concave up, and concave down? Find the local maxima, local minima, and points of inflection of $y = f(x)$. Graph $y = f(x)$.
10. Find $\lim_{x \rightarrow 0} \frac{e^{x^2} - 1 - x^2 - \frac{x^4}{2} - \frac{x^6}{6} - \frac{x^8}{24}}{x^{10}}$. Justify your answer.
11. Find $\int \frac{x dx}{(x - 3)^2}$. Check your answer.
12. Find $\int \ln x dx$. Check your answer.
13. Find $\int_e^\infty \frac{1}{x(\ln x)^2} dx$.

14. Find the limit of the sequence whose n^{th} term is $a_n = \left(\frac{n-1}{n}\right)^n$. Justify your answer.

15. What familiar function is equal to

$$f(x) = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + \dots?$$

Justify your answer.

16. Does the series $\sum_{n=1}^{\infty} \frac{n+3}{n^2 \sqrt{n}}$ converge or diverge? Justify your answer.

17. Does the series $\sum_{n=1}^{\infty} \frac{n^2}{n!}$ converge or diverge? Justify your answer.

18. Find the Taylor polynomial $P_3(x)$ for $f(x) = (1+x)^{3/2}$ about $a = 0$ and bound the error $R_3(x)$ if $-1 \leq x \leq 0$.

19. Use the Parabolic Rule to approximate the amount of water required to fill a pool shaped like the picture below to a depth of 6 feet. (See a different page.) All dimensions are in feet. Recall that Parabolic Rule says that if n is even, then $\int_a^b f(x)dx$ is equal to

$$\frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)] + E_n,$$

for $h = \frac{b-a}{n}$, $x_i = a + hi$, and $E_n = -\frac{(b-a)^5}{180n^4} f^{(4)}(c)$ for some c with $a \leq c \leq b$. (Just record the sum. You are not required to perform any addition or multiplication.)

20. Carbon 14, an isotope of carbon, is radioactive and decays at a rate proportional to the amount present. Its half life is 5730 years; that is, it takes 5730 years for a given amount of carbon 14 to decay to one-half its original size. If 10 grams was present originally, how much will be left after 2000 years? (You may leave \ln in your answer.)