\qquad

Quiz for September 20, 2005

Find $\lim _{x \rightarrow 0} \frac{\tan 3 x^{2}+\sin ^{2} 5 x}{x^{2}}$. Explain carefully which facts you are using.
ANSWER: We see that

$$
\lim _{x \rightarrow 0} \frac{\tan 3 x^{2}+\sin ^{2} 5 x}{x^{2}}=\lim _{x \rightarrow 0}\left(\frac{3}{\cos 3 x^{2}} \frac{\sin 3 x^{2}}{3 x^{2}}+25 \frac{\sin 5 x}{5 x} \frac{\sin 5 x}{5 x}\right) .
$$

We know that $\lim _{t \rightarrow 0} \frac{\sin t}{t}=1$. We apply this fact with t replaced by $3 x^{2}$ and later with t replaced by $5 x$. We know that the limit of a sum is the sum of the limits and the limit of a product is the product of the limits. The answer to our problem is

$$
3 \cdot 1+25 \cdot 1 \cdot 1=28 .
$$

