\qquad

Quiz for August 25, 2005

Find an equation for the family of lines tangent to the circle with center at the origin and radius 3 .

ANSWER: For each point P on the circle, there is exactly one line in our family! One easy way to think about P is in terms of the angle θ that the line segment from the origin to P makes with the positive x-axis. So, $P=(3 \cos \theta, 3 \sin \theta)$. The line segement from the origin to P has slope $\frac{3 \sin \theta}{3 \cos \theta}=\frac{\sin \theta}{\cos \theta}$. So the line from our family through P has slope $-\frac{\cos \theta}{\sin \theta}$ (provided $\sin \theta \neq 0$). This line is $y-3 \sin \theta=-\frac{\cos \theta}{\sin \theta}(x-3 \cos \theta)$. Multiply both sides by $\sin \theta$ to get

$$
\sin \theta y-3 \sin ^{2} \theta=-\cos \theta x+3 \cos ^{2} \theta
$$

This is the same as:

$$
\sin \theta y+\cos \theta x=3
$$

By the way, the derivation does not make sense for $P=(3,0)$ or $(-3,0)$ because in these cases $\sin \theta=0$; hence, I may not divide by $\sin \theta$; however, my ultimate answer magically works at these points.

Check a few. When $\theta=0$, the line is $x=3$, and this is what we expected. When $\theta=\frac{\pi}{4}$, the line is $x+y=3 \sqrt{2}$, and this is also what we expect! When $\theta=\pi / 2$, the line is $y=3$, which is also correct!

