PRINT Your Name: \qquad

Quiz for November 8, 2005

A rectangular area of $3200 \mathrm{ft}^{2}$ is to be fenced off. Two opposite sides will use fencing costing $\$ 1$ per foot and the remaining sides will use fencing costing $\$ 2$ per foot. Find the dimensions of the rectangle of least cost.

ANSWER: Let the rectangle be x feet by y feet, where the sides that are x feet long cost $\$ 1$ per foot and the sides that are y feet long cost $\$ 2$ per foot.

So the total cost is $C=2 x+4 y$. We are told that the area of the rectangle is $3200 \mathrm{ft}^{2}$, so $x y=3200$ or $y=3200 / x$. We must minimize the function $C(x)=2 x+\frac{4(3200)}{x}$. The function is defined for $0<x$. The domain is not a closed interval, but we are happy to see that C goes to infinity as $x \rightarrow 0$, also as $x \rightarrow \infty$; thus, the minimum cost occurs some place where $C^{\prime}(x)=0$. At any rate

$$
C^{\prime}(x)=2-\frac{4(3200)}{x^{2}}=\frac{2\left(x^{2}-6400\right)}{x^{2}}=\frac{2(x-80)(x+80)}{x^{2}} .
$$

Observe that $x=80$ is the only value for x which is in the domain of $C(x)$ and also has $C^{\prime}(x)=0$. Indeed, we see that the graph of $C(x)=2 x+\frac{4(3200)}{x}$ looks like:

We conclude that
the rectangle of least cost is 80 feet by 40 feet, where the fencing that costs $\$ 1$ per foot is used on the sides of length 80 feet.

