\qquad

Quiz for November 15, 2005

Suppose that f is a differentiable function defined on the interval I and $f^{\prime}(x) \neq 0$ on I. Prove that the equation $f(x)=0$ can have at most one real root in I.

ANSWER: We suppose that f has at least two roots in I and we show that this supposition leads to a contradiction. If $a<b$ are in I with $f(a)=f(b)=0$, then the Mean Value Theorem guarantees that there exists a number c with $a<c<b$ and $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=0$. However, c is necessarily in I and the hypothesis said that f^{\prime} is never zero on I. We conclude that it is impossible for f to have at least two roots in I; that is, f has at most one root in I.

