PRINT Your Name: \qquad

Quiz for October 4, 2005

A rock is dropped from a height of 576 feet and falls toward Earth in a straight line. In t seconds the rock drops a distance of $s=16 t^{2}$ feet.
(a) How many seconds after release does the rock hit the ground?
(b) What is the average velocity of the rock during the time it is falling?
(c) What is the average velocity of the rock for the first 3 seconds?
(d) What is the instantaneous velocity of the rock when it hits the ground?

Don't forget to give units. It is not important to me that you use the definition of the derivative to find any derivatives that you need to use.
ANSWER: We set up our axis with $s=0$ the point at which the rock is dropped and $s=576$ the point at which the rock hits the ground. Now $s(t)=16 t^{2}$ gives the position of the rock at time t.
(a) The rock hits the ground when $s(t)=576$; that is, $16 t^{2}=576$, so $t^{2}=36$, and $t=6$ seconds.
(b) The average speed of the rock during its flight is $\frac{s(6)-s(0)}{6-0}=\frac{576}{6}=$ 96 feet/second.
(c) The average speed of the rock during the first 3 seconds is $\frac{s(3)-s(0)}{3-0}=\frac{144}{3}=$ 48 feet/second.
(d) The instantaneous velocity of the rock when the rock hits the ground is $s^{\prime}(6)$. We know that $s^{\prime}(t)=32 t$. So, the answer is $s^{\prime}(6)=32(6)=192$ feet/second.

