PRINT your name _____

Quiz for March 3, 2009 - 8:00 section

Remove everything from your desk except this page and a pencil or pen.

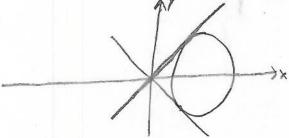
Circle your answer. Show your work.

The quiz is worth 5 points.

Find equations for two lines through the origin that are tangent to

 $(*) 2x^2 - 4x + y^2 + 1 = 0.$

Answer:



Let (a, b) be a point on the graph of

$$2x^2 - 4x + y^2 + 1 = 0$$

with the property that the tangent line passes through the origin. We automatically know that $2a^2 - 4a + b^2 + 1 = 0$. We also know that the slope of the line joining (a,b) to (0,0) is $\frac{dy}{dx}|_{(a,b)}$. The line joining (a,b) to (0,0) has slope $\frac{b}{a}$. We take $\frac{d}{dx}$ of both sides of (*) to see that

$$4x - 4 + 2y\frac{dy}{dx} = 0$$
$$2y\frac{dy}{dx} = 4 - 4x$$
$$\frac{dy}{dx} = \frac{4 - 4x}{2y} = \frac{2 - 2x}{y}.$$

We solve the equations

$$2a^2 - 4a + b^2 + 1 = 0$$
 and $\frac{b}{a} = \frac{2 - 2a}{b}$

simultaneously. We solve the equations

$$2a^2 - 4a + b^2 + 1 = 0$$
 and $b^2 = 2a - 2a^2$

simultaneously. We solve the equations

$$2a^2 - 4a + (2a - 2a^2) + 1 = 0$$
 and $b^2 = 2a - 2a^2$

simultaneously. We solve the equations

$$-2a + 1 = 0$$
 and $b^2 = 2a - 2a^2$

simultaneously. We solve the equations

$$a = \frac{1}{2}$$
 and $b^2 = 2a - 2a^2$

simultaneously. So, $a=\frac{1}{2}$ and $b^2=\frac{1}{2}$. The two points are $(\frac{1}{2},\frac{1}{\sqrt{2}})$ and $(\frac{1}{2},-\frac{1}{\sqrt{2}})$. We see that $\frac{dy}{dx}|_{(\frac{1}{2},\frac{1}{\sqrt{2}})}=\sqrt{2}$ and $\frac{dy}{dx}|_{(\frac{1}{2},-\frac{1}{\sqrt{2}})}=-\sqrt{2}$. The tangent lines are $y-\frac{1}{\sqrt{2}}=\sqrt{2}(x-\frac{1}{2})$ and $y+\frac{1}{\sqrt{2}}=-\sqrt{2}(x-\frac{1}{2})$; in other words,

$$y = \sqrt{2}x$$
 and $y = -\sqrt{2}x$.