PRINT your name \qquad
Quiz for February 10, $2009-9: 30$ section
Remove everything from your desk except this page and a pencil or pen.
Circle your answer. Show your work.
The quiz is worth 5 points.
Find a nonzero value for the constant k that makes

$$
f(x)= \begin{cases}\frac{\tan k x}{x} & \text { if } x<0 \\ 3 x+2 k^{2} & \text { if } 0 \leq x\end{cases}
$$

be continuous at $x=0$.
Answer: We see that

$$
\lim _{x \rightarrow 0^{+}} f(x)=2 k^{2} \quad \text { and } \quad \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{\sin k x}{k x} \cdot \frac{k}{\cos x}=k
$$

In order for $f(x)$ to be continuous at $x=0$, we need

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x) .
$$

In other words, we must have

$$
2 k^{2}=k
$$

So,

$$
k(2 k-1)=0
$$

and $k=0$ or $k=1 / 2$. Be sure to notice that our choice of k yields $f(0)=\lim _{x \rightarrow 2} f(0)=1 / 2$.

