PRINT your name \qquad

Quiz for February 10, 2009 - 8:00 section

Remove everything from your desk except this page and a pencil or pen.

 The quiz is worth 5 points.Find the values of the constants k and m, if possible, that will make the function

$$
f(x)= \begin{cases}x^{2}+5 & \text { if } 2<x \\ m(x+1)+k & \text { if }-1<x \leq 2 \\ 2 x^{3}+x+7 & \text { if } x \leq-1\end{cases}
$$

continuous everywhere.
Answer: We see that

$$
\lim _{x \rightarrow 2^{+}} f(x)=9, \quad \lim _{x \rightarrow 2^{-}} f(x)=3 m+k, \quad \lim _{x \rightarrow-1^{+}} f(x)=k, \quad \lim _{x \rightarrow-1^{-}} f(x)=4 .
$$

In order for $f(x)$ to be continuous at $x=2$, we need

$$
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{-}} f(x) .
$$

In other words, we must have

$$
9=3 m+k .
$$

In order for $f(x)$ to be continuous at $x=-1$, we need

$$
\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{-}} f(x)
$$

In other words, we must have

$$
\begin{equation*}
k=4 . \tag{*}
\end{equation*}
$$

Solve the equations $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ simultaneously to get $k=4 \& m=5 / 3$. Be sure to notice that our choice of k and m yields $f(2)=\lim _{x \rightarrow 2} f(x)=9$ and $f(-1)=\lim _{x \rightarrow-1} f(x)=4$.

