PRINT Your Name: \qquad Section: \qquad
There are 10 problems on 5 pages. Each problems is worth 10 point. SHOW your work. CIRCLE your answer. NO CALCULATORS! You might find the following formulas to be useful:

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \text { and } \quad \sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

1. State the Mean Value Theorem.
2. Define the definite integral $\int_{a}^{b} f(x) d x$.
3. Find $\int x\left(2 x^{2}+\frac{1}{x}\right) d x$. (Check your answer.)
4. Find $\int\left(\cos ^{4} x^{3}\right)\left(x^{2} \sin x^{3}\right) d x$. (Check your answer.)
5. Find $\int x \sqrt{x+1} d x$. (Check your answer.)
6. Solve the Initial Value Problem $\frac{d y}{d t}=t^{3} y^{2}, y(2)=1$. (Check your answer.)
7. Consider the region A, which is bounded by the x-axis, $y=(x-1)^{2}, x=1$, and $x=2$. Consider 50 rectangles, all with base $1 / 50$, which UNDER estimate the area of A. How much area is inside the 50 rectangles? (You must answer the question I asked. I expect an exact answer in closed form.)
8. Let $f(x)=x^{5 / 3}-x^{2 / 3}$. Where is $f(x)$ increasing, decreasing, concave up, and concave down? What are the local extreme points and points of inflection of $y=f(x)$. Find all vertical and horizontal asymptotes. Graph $y=f(x)$.
9. Find the points on the curve $y=10-x^{2}$ which are closest to the point $(0,0)$.
10. A 30 - foot ladder is leaning against a wall. If the bottom of the ladder is pulled along the level pavement directly away from the wall at 3 feet per second, how fast is the top of the ladder moving down the wall when the foot of the ladder is 5 feet from the wall?
