Math 141, 1995, Final Exam

PRINT Your Name:
There are 19 problems on 10 pages. The exam is worth 200 points. Problems 1 and 3 are each worth 15 points. Each of the other problems is worth 10 points. SHOW your work. CIRCLE your answer. NO CALCULATORS!!!

1. (The penalty for each mistake is five points.) The picture represents the graph of $y=f(x)$.
(a) Fill in the blanks:

$$
\begin{array}{llll}
f(1)=- & \lim _{x \rightarrow 1^{+}} f(x)=- & \lim _{x \rightarrow 1^{-}} f(x)=\text { — } & \lim _{x \rightarrow 1} f(x)=\text { — } \\
f(2)=- & \lim _{x \rightarrow 2^{+}} f(x)=- & \lim _{x \rightarrow 2^{-}} f(x)=\text { - } & \lim _{x \rightarrow 2} f(x)=\text { — } \\
f(3)=- & \lim _{x \rightarrow 3^{+}} f(x)=- & \lim _{x \rightarrow 3^{-}} f(x)=- & \lim _{x \rightarrow 3} f(x)=\text { — }
\end{array}
$$

(b) Where is f discontinuous?
(c) Where is f not differentiable?
2. What is the equation of the line tangent to $f(x)=2 x^{9}-3 x^{2}$ at the point where $x=1$.
3. (The penalty for each mistake is five points.) Let

$$
f(x)= \begin{cases}x+1 & \text { if } x \leq 1 \\ x^{2}-1 & \text { if } 1<x<2 \\ -x+5 & \text { if } 2 \leq x\end{cases}
$$

(a) Graph $y=f(x)$.
(b) Fill in the blanks:

$$
\begin{aligned}
& f(1)=-\quad \lim _{x \rightarrow 1^{+}} f(x)=-\quad \lim _{x \rightarrow 1^{-}} f(x)=-\quad \lim _{x \rightarrow 1} f(x)=- \\
& f(2)=\text { _ } \quad \lim _{x \rightarrow 2^{+}} f(x)=\text { - } \quad \lim _{x \rightarrow 2^{-}} f(x)=\text { — } \quad \lim _{x \rightarrow 2} f(x)= \\
& f(3)=\text { — } \quad \lim _{x \rightarrow 3^{+}} f(x)=\text { — } \quad \lim _{x \rightarrow 3^{-}} f(x)=\text { - } \quad \lim _{x \rightarrow 3} f(x)=\text { — }
\end{aligned}
$$

(c) Where is f discontinuous?
(d) Where is f not differentiable?
4. Use the DEFINITION of the DERIVATIVE to find the derivative of $f(x)=\sqrt{2 x-1}$.
5. If $y=\frac{\sin \left(7 x^{2}+3 x^{2}-15 x\right)}{\left(4 x^{5}+5 x^{3}+9 x\right)^{2}}$, then find $\frac{d y}{d x}$.
6. Find $\frac{d y}{d x}$ for $6 x^{3} y^{2}+2 x=x \cos y$.
7. STATE both parts of the Fundamental Theorem of Calculus.
8. DEFINE the definite integral $\int_{a}^{b} f(x) d x$.
9. A 30 -foot ladder is leaning against a wall. If the bottom of the ladder is pulled along the level pavement directly away from the wall at 4 feet per second, how fast is the top of the ladder moving down the wall when the foot of the ladder is 6 feet from the wall?
10. Find $\int\left(\frac{2}{x^{4}}+\sqrt{2-3 x}\right) d x$. Check your answer.
11. Find $\int x^{2} \sin \left(8 x^{3}+18\right) d x$. Check your answer.
12. Find $\int_{0}^{1} \frac{x^{2}}{\sqrt{4 x^{3}+18}} d x$.
13. Let

$$
f(x)=3 x-x^{3} .
$$

Find where $f(x)$ is increasing, decreasing, concave up, and concave down. Find the local extreme points and the points of inflection of $y=f(x)$. Find the vertical and horizontal asymptotes of $y=f(x)$. GRAPH $y=f(x)$.
14. Find the area of the region which is bounded by $y=x, y+x^{2}=0$ and $x=2$.
15. Let R be the region in the first quadrant which is bounded by $y=x^{2}, x=2$, and the x-axis. Find the volume of the solid which is obtained by revolving R about the x-axis.
16. Find the length of $y=\frac{2}{3}\left(x^{2}+1\right)^{3 / 2}$ from $x=1$ to $x=4$.
17. Find the area of the surface obtained by revolving $y=\sqrt{25-x^{2}}$, from $x=-2$ to $x=3$, about the x-axis.
18. Let

$$
f(x)=16 x^{-\frac{1}{3}}+x^{\frac{5}{3}} .
$$

Find where $f(x)$ is increasing, decreasing, concave up, and concave down. Find the local extreme points and the points of inflection of $y=f(x)$. Find the vertical and horizontal asymptotes of $y=f(x)$. GRAPH $y=f(x)$.
19. An open box with a capacity of 72,000 cubic inches is needed. If the box must be twice as long as it is wide, what dimensions would require the least amount of material?

