Math 141, 1995, Exam 4

PRINT Your Name: \qquad
There are 13 problems on 7 pages. Problems 1 and 2 are each worth 6 points. Each of the other problems is worth 8 points. SHOW your work. CIRCLE your answer. You might find the following formulas to be useful:

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \text { and } \quad \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

NO CALCULATORS!

1. State both parts of the Fundamental Theorem of Calculus.
2. Define the definite integral.
3. Let $y=\sqrt{x \cos ^{3}\left(4 x^{2}+3\right)+\sin ^{4}(x)}$. Find $\frac{d y}{d x}$.
4. Find $\int \frac{2}{x^{2}}+\sin (2 x) d x$.
5. Find $\int \frac{\sin x \cos x}{\sqrt{2 \sin ^{2} x+1}} d x$.
6. Let $f(x)=\frac{x^{2}-2 x+4}{x-2}$. Where is $f(x)$ increasing, decreasing, concave up, and concave down? What are the local extreme points and points of inflection of $y=f(x)$. Find all vertical and horizontal asymptotes. Graph $y=f(x)$.
7. The surface area of a cube is growing at the constant rate of 1000 square inches per second. How fast is the volume growing when each edge is 5 inches long?
8. Find the points on the curve $y^{2}+2 x=9$ which are closest to the point $(0,0)$.
9. Solve the Initial Value Problem $\frac{d y}{d x}=x^{3} y^{2}, y(2)=1$.
10. Let $f(x)=x^{2}+x$. Simplify the expression $\sum_{i=1}^{n} f\left(\frac{3 i}{n}\right)$. Your answer is not allowed to have a summation sign or
11. Find the exact amount of area inside the following 50 boxes. The base of each box has the same size.
12. Find the area of region between $x-2 y=0$ and $y^{2}-2 x=0$.
13. Find the volume of the solid which is obtained by revolving the region of problem 12 about the x-axis.
