Math 141, 1995, Exam 2

PRINT Your Name: \qquad
There are 13 problems on 6 pages. In problem 10 you MUST use the definition of the derivative; in the other problems you may use any legitimate derivative rule. SHOW your work. CIRCLE your answer.

1. (10 points - The penalty for each mistake is four points.) Let

$$
f(x)= \begin{cases}4-x & \text { if } x<2, \\ 3 & \text { if } x=2, \\ x-1 & \text { if } 2<x<3, \text { and } \\ x^{2}-8 & \text { if } 3 \leq x\end{cases}
$$

(a) Graph $y=f(x)$.
(b) Fill in the blanks:

$$
\begin{aligned}
& f(1)=_\quad \lim _{x \rightarrow 1^{+}} f(x)=_\quad \lim _{x \rightarrow 1^{-}} f(x)=_\quad \lim _{x \rightarrow 1} f(x)=\text { _ } \\
& f(2)=\text { _ } \quad \lim _{x \rightarrow 2^{+}} f(x)=\text { _ } \quad \lim _{x \rightarrow 2^{-}} f(x)=\text { _ } \quad \lim _{x \rightarrow 2} f(x)=\text { _ } \\
& f(3)=_\quad \lim _{x \rightarrow 3^{+}} f(x)=_\quad \lim _{x \rightarrow 3^{-}} f(x)=_\quad \lim _{x \rightarrow 3} f(x)=
\end{aligned}
$$

2. (7 points) Let $y=\frac{1}{\sqrt{2 x}}-\sin (2 x)$. Find $\frac{d y}{d x}$.
3. (10 points - The penalty for each mistake is four points.) The picture represents the graph of $y=f(x)$. Fill in the blanks:

$$
\begin{aligned}
& f(1)=_\quad \lim _{x \rightarrow 1^{+}} f(x)=_\quad \lim _{x \rightarrow 1^{-}} f(x)=\text { — } \quad \lim _{x \rightarrow 1} f(x)=\text { — } \\
& f(2)=_\quad \lim _{x \rightarrow 2^{+}} f(x)=_\quad \lim _{x \rightarrow 2^{-}} f(x)=_\quad \lim _{x \rightarrow 2} f(x)= \\
& f(3)=_\quad \lim _{x \rightarrow 3^{+}} f(x)=_\quad \lim _{x \rightarrow 3^{-}} f(x)=_\quad \lim _{x \rightarrow 3} f(x)=
\end{aligned}
$$

4. (7 points) Let $y=\left(2 x^{3}+\sqrt{2} x\right)^{4}\left(2 x^{5}+\cos (3 x)\right)^{6}$. Find $\frac{d y}{d x}$.
5. (7 points) Let $y=\frac{4 x^{5}+\frac{2}{x}+19}{8 x^{3}+15 x+6}$. Find $\frac{d y}{d x}$.
6. (7 points) Let $4 x y^{2}+\sin (x y)=3 y^{2}+6 x^{2}$. Find $\frac{d y}{d x}$.
7. (7 points) Let $y=\sqrt{\sin ^{2}\left(4 x^{2}+3 x+19\right)+\cos ^{3}(x)}$. Find $\frac{d y}{d x}$.
8. (8 points) A cube is growing at the constant rate of 1000 cubic inches per second. How fast is each edge growing when each edge is 5 inches long?
9. (7 points) Find the equation of the line tangent to $y=3 x^{5}+4 x+2$ when $x=1$.
10. (7 points) Use the DEFINITION of the DERIVATIVE to find the derivative of $f(x)=\sqrt{2 x+1}$.
11. (8 points) Find the equation of every line which passes through $(-1,-1)$ and is also tangent $y=x^{2}+2 x+4$.
12. (7 points) The position of an object above the earth's surface is given by

$$
s(t)=-16 t^{2}+48 t+64
$$

What is the velocity of the object when it strikes the ground?
13. (8 points) A student is using a straw to drink from a conical cup, whose axis is vertical, at the rate of 3 cubic inches per second. If the height of the cup is 12 inches and the radius of its opening is 8 inches, how fast is the level of the liquid falling when the depth of the liquid is 7 inches? (Recall that the volume of a cone is $V=\frac{1}{3} \pi r^{2} h$.)

