Math 141, 1995, Exam 1

PRINT Your Name:______ There are 13 problems on 4 pages. Problem 2 is worth 12 points; problem 3 is worth 11 points; each of the other problems is worth 7 points. In problem 7 you MUST use the definition of the derivative; in the other problems you may use any legitimate derivative rule. SHOW your work. *CIRCLE* your answer.

- 1. Let f(x) = 2x + 1 and $g(x) = 3x^2$. (a) Find $(f \circ g)(x)$.
 - (b) Find $(g \circ f)(x)$.
- 2. (The penalty for each mistake is four points.) Let

$$f(x) = \begin{cases} x & \text{if } x < 1, \\ 3 - x & \text{if } 1 \le x \le 2, \text{ and} \\ x^2 - 3 & \text{if } 2 < x. \end{cases}$$

- (a) Graph y = f(x).
- (b) Fill in the blanks:

- 3. (The penalty for each mistake is four points.) The picture represents the graph of y = f(x).
 - (a) Fill in the blanks:

- (b) Where is f discontinuous?
- (c) Where is f not differentiable?
- 4. Graph $y = (x 3)^2 + 1$.
- 5. Find the angle (in radians) between y = x and y = 2x.
- 6. Express $\sin(x-y)$ in terms of $\sin x$, $\sin y$, $\cos x$, and $\cos y$.

- 7. Use the DEFINITION of the DERIVATIVE to find the derivative of $f(x) = \sqrt{x}$.
- 8. Find the equation of the line tangent to $f(x) = 4x^4 + 3x^2$ at the point (1,7).

9. Find
$$\lim_{x \to 0} \frac{\sin x}{x^3}$$
.
10. Find $\lim_{x \to 1} \frac{x^2 - 3x + 2}{x - 1}$.
11. Find $\lim_{x \to 1} \frac{x^2 - 3x + 2}{(x + 1)^2}$.
12. Find $\lim_{x \to 1} \frac{x^2 + 3x + 2}{(x - 1)^2}$.
13. Let $f(x) = (2x^3 + 3x)(8x^2 + 19x + 1)$. Find $f'(x)$.