1995 Final Exam

PRINT Your Name: There are 19 problems on 10 pages. The exam is worth 200 points. Problems 1 and 3 are each worth 15 points. Each of the other problems is worth 10 points. SHOW your work. CIRCLE | your answer. NO CALCULATORS!!!

1. (The penalty for each mictake is five points.) The picture represents the graph of y = f(x).

$$f(1) = \underbrace{\mathcal{H}}_{x \to 1^{+}} f(x) = \underbrace{5}_{x \to 1^{-}} \lim_{x \to 1^{-}} f(x) = \underbrace{5}_{x \to 1} \lim_{x \to 1} f(x) = \underbrace{5}_{x \to 1} \lim_{x \to 1} f(x) = \underbrace{5}_{x \to 1} \lim_{x \to 1} f(x) = \underbrace{5}_{x \to 1} \lim_{x \to 2^{+}} f(x) = \underbrace{4}_{x \to 2^{-}} \lim_{x \to 3^{+}} f(x) = \underbrace{5}_{x \to 3^{-}} \lim_{x \to 3^{-}} f(x) = \underbrace{5}_{x \to 3^{-}} \lim_{x \to 3^{-}} f(x) = \underbrace{5}_{x \to 1^{-}} \lim_{x \to 1^{+}} f(x) = \underbrace{5}_{x \to 1^{+}} \lim_{x \to$$

- (b) Where is f discontinuous? X=1/3
- (c) Where is f not differentiable? $\chi = 1,3$
- 2. What is the equation of the line tangent to $f(x) = 2x^9 3x^2$ at the point where x = 1.

$$f(1) = -1$$

$$f'(x) = 18x 8 - 6x$$

$$f'(1) = 12$$

$$Y + 1 = 12(x^{-1})$$

$$Y = 12x - 13$$

3. (The penalty for each mistake is five points) Let

$$f(x) = \begin{cases} x+1 & \text{if } x \le 1, \\ x^2 - 1 & \text{if } 1 < x < 2, \\ -x+5 & \text{if } 2 \le x. \end{cases}$$

(a) Graph y = f(x).

(b) Fill in the blanks:

$$f(1) = \frac{2}{2} \qquad \lim_{x \to 1^{+}} f(x) = \underline{\mathcal{O}} \qquad \lim_{x \to 1^{-}} f(x) = \underline{\mathcal{A}} \qquad \lim_{x \to 1} f(x) = \underline{\underline{\mathcal{O}}} \mathcal{F}$$

$$f(2) = \underline{\mathcal{A}} \qquad \lim_{x \to 2^{+}} f(x) = \underline{\mathcal{A}} \qquad \lim_{x \to 2^{-}} f(x) = \underline{\mathcal{A}} \qquad \lim_{x \to 2} f(x) = \underline{\underline{\mathcal{A}}}$$

$$f(3) = \underline{\mathcal{A}} \qquad \lim_{x \to 3^{+}} f(x) = \underline{\mathcal{A}} \qquad \lim_{x \to 3^{-}} f(x) = \underline{\underline{\mathcal{A}}} \qquad \lim_{x \to 3} f(x) = \underline{\underline{\mathcal{A}}}$$

- (c) Where is f discontinuous? x = 0
- (d) Where is f not differentiable? x=1, 2
- 4. Use the DEFINITION of the DERIVATIVE to find the derivative of $f(x) = \sqrt{2x - 1} .$

$$=\frac{1}{2\sqrt{2x-1}}=\sqrt{\frac{1}{\sqrt{2x-1}}}$$

5. If
$$y = \frac{\sin(7x^2 + 3x^2 - 15x)}{(4x^5 + 5x^3 + 9x)^2}$$
, then find $\frac{dy}{dx}$.

6. Find
$$\frac{dy}{dx}$$
 for $6x^3y^2 + 2x = x\cos y$.

6. Find
$$\frac{dy}{dx}$$
 for $6x^3y^2 + 2x = x \cos y$.
 $12 X^3 Y Y' + 18 X^2 Y^2 + 2 = -X \sin Y Y' + \cos Y$

$$y' = \frac{\cos y - 18 X^2 Y^2 - 2}{12 X^3 Y^4 + X \sin Y}$$

7. STATE both parts of the Fundamental Theorem of Calculus.

29)

8. DEFINE the definite integral $\int_a^b f(x) dx$.

For each partition $f(q = k_0 \le k_1 \le ... \le k_n = b)$ let $D = M_1(x_1 - k_0) + \dots + M_n(x_n - k_{n-1})$ $L_p = m_1(x_1 - k_0) + \dots + m_n(k_n - k_{n-1})$ wher $M_i = m_0 + m_0 + m_0 = k_0 + k_0$ and $M_i = m_0 + k_0 + k_0 = k_0 = k_0$ and $M_i = m_0 + k_0 = k_0 =$

It there is agains on # with Lp = # = Up box of P, Then that wanser is 5 fix 1 dx.

9. A 30-foot ladder is leaning against a wall. If the bottom of the ladder is pulled along the level pavement directly away from the wall at 4 feet per second, how fast is the top of the ladder moving down the wall when the foot of the ladder is 6 feet from the wall?

10

x++ y=900 2x = 1y = 0

when x > 6 Y= J900-36

, & Bt/sec.

10. Find
$$\int (\frac{2}{x^4} + \sqrt{2-3x}) dx$$
. Check your answer.

11. Find
$$\int x^2 \sin(8x^3 + 18) dx$$
. Check your answer.

12. Find
$$\int_{0}^{1} \frac{x^{2}}{\sqrt{4x^{3}+18}} dx$$
. = $\int_{18}^{22} \frac{1}{4} u^{-1} du = \frac{1}{6} u^{\frac{1}{2}} \int_{18}^{22} u = 4x^{3} + 18$ = $\frac{1}{6} (\sqrt{22} - \sqrt{8})$

36

13. Let

$$f(x) = 3x - x^3.$$

Find where f(x) is increasing, decreasing, concave up, and concave down. Find the local extreme points and the points of inflection of y = f(x). Find the vertical and horizontal asymptotes of y = f(x). GRAPH y = f(x).

(31)

14. Find the area of the region which is bounded by y = x, $y + x^2 = 0$ and x = 2.

$$= -\frac{x^3}{3} - \frac{x^2}{2} \Big]_{-1}^{0} + \frac{x^2}{2} + \frac{x^3}{3} \Big]_{0}^{2}$$

15. Let R be the region in the first quadrant which is bounded by $y = x^2$, x = 2, and the x-axis. Find the volume of the solid which is obtained by revolving R about the x-axis.

16. Find the length of
$$y = \frac{2}{3}(x^2 + 1)^{3/2}$$
 from $x = 1$ to $x = 4$.

$$\frac{5}{5} \sqrt{1 + (\frac{24}{5})^2} dx = \frac{5}{5} \sqrt{2 + 1} dx = \frac{2x^3 + x}{3} d$$

17. Find the area of the surface obtained by revolving
$$y = \sqrt{25 - x^2}$$
, from $x = -2$ to $x = 3$, about the x -axis.

18. Let

$$f(x) = 16x^{-\frac{1}{3}} + x^{\frac{5}{3}}.$$

Find where f(x) is increasing, decreasing, concave up, and concave down. Find the local extreme points and the points of inflection of y = f(x). Find the vertical and horizontal asymptotes of y = f(x). GRAPH y = f(x).

$$f' = \frac{-16}{3} x^{-\frac{1}{3}} + \frac{5}{3} x^{\frac{1}{3}} = \frac{1}{3} x^{\frac{1}{3}} \left(-16 + 5 x^{2} \right)$$

$$f'' = \frac{64}{9} x^{\frac{1}{3}} = \frac{1}{9} x^{\frac{1}{3}} \left(-16 + 5 x^{2} \right)$$

$$\frac{---}{6} + \frac{1}{7} + \frac{1}{9} x^{\frac{1}{3}} = \frac{1}{9} x^{\frac{1}{3}} \left(-16 + 5 x^{2} \right)$$

$$\frac{---}{6} + \frac{1}{7} + \frac{1}{9} x^{\frac{1}{3}} = \frac{1}{9} x^{\frac{1}{3}} \left(-16 + 5 x^{2} \right)$$

19. An open box with a capacity of 72,000 cubic inches is needed. If the box must be twice as long as it is wide, what dimensions would require the least amount of material?

2ev w

$$72,000 = 2w^{2}G$$
 $= G$

$$A = 2w^{2} + 2wG + 4wG$$

$$A = 2w^{2} + 6wG$$

$$A^{1} = 4W - \frac{6.36,000}{W^{2}} = \frac{4W^{3} - 6.6.6.0^{3}}{W^{3}}$$

$$A = 0$$
 whe $w = \frac{60}{34} = \frac{3}{3}$ = $\frac{3}{5}$ \(\frac{5}{2} \) \(\frac{2}{3} \)

$$h = \frac{36,000}{3600} = 2032$$

$$\frac{3600}{316}$$