
Math 141, Final Exam, Fall 2005, Solution
Write your answers as legibly as you can on the blank sheets of paper provided.
Use only one side of each sheet. Be sure to number your pages. Put your solution
to problem 1 first, and then your solution to number 2, etc.; although, by using
enough paper, you can do the problems in any order that suits you.

There are 23 problems. Problems 1 through 7 are worth 8 points each. Each of the
other problems is worth 9 points. The exam is worth 200 points. SHOW your work.
Make your work be coherent and clear. Write in complete sentences whenever this

is possible. CIRCLE your answer. CHECK your answer whenever possible.
No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don’t already
know your e-mail address and you want me to know it, then send me an e-mail.
Otherwise, get your grade from VIP.

You might find the following formulas to be useful:

n
∑

k=1

k2 =
n(n + 1)(2n + 1)

6
and

n
∑

k=1

k3 =
n2(n + 1)2

4
.

I will post the solutions on my website a few hours after the exam is finished.

1. Let y = 2x . Find dy
dx .

The derivative is
dy

dx
= (ln 2)2x.

2. Let y = cos(cos x) . Find dy
dx .

The derivative is
dy

dx
= sin x sin(cos x) .

3. Let y = x2(arcsin x)3 . Find dy
dx

.

The derivative is
dy

dx
=

3x2(arcsin x)2√
1 − x2

+ 2x(arcsin x)3 .

4. Let y = sin x

(
∫ x

0

sin(t2)dt

)

. Find dy
dx .

The derivative is
dy

dx
= sin x sin(x2) + cos x

(
∫ x

0

sin(t2)dt

)

.
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5. Find

∫ 2

1

x2dx .

The integral is

x3

3

∣

∣

∣

∣

2

1

=
8

3
− 1

3
=

7

3
.

6. Find

∫ π

9

π

12

sec2 3θdθ .

The integral is

tan 3θ

3

∣

∣

∣

∣

π

9

π

12

=
tan π

3

3
− tan π

4

3
= 1

3(
√

3 − 1) .

7. Find

∫ 1

−1

x2dx√
x3 + 9

.

The integral is

2
√

x3 + 9

3

∣

∣

∣

∣

∣

1

−1

=
2
√

10

3
− 2

√
8

3
.

8. Find

∫

√

π

2

0

5x cos(x2)dx .

The integral is

5

2
sin(x2)

∣

∣

∣

∣

√

π

2

0

=
5

2

(

sin(
π

4
) − sin 0

)

=
5
√

2

4
.

9. Find lim
n→∞

1
n3

n
∑

k=1

k2 .

The limit is

lim
n→∞

1

n3

n(n + 1)(2n + 1)

6
= lim

n→∞

(1 + 1
n )(2 + 1

n )

6
=

1

3
.
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10. Find lim
x→∞

x2 −
√

x4 + 6x2 .

The limit is

lim
x→∞

x4 − (x4 + 6x2)

x2 +
√

x4 + 6x2
= lim

x→∞

−6x2

x2 +
√

x4 + 6x2
= lim

x→∞

−6

1 +
√

1 + 6
x2

= −3 .

11. Find lim
x→0+

x
5

1+ln x .

Let y = x
5

1+ln x . We see that

lim
x→0+

ln y = lim
x→0+

5

1 + ln x
ln x = lim

x→0+

5
1

ln x + 1
= 5.

We conclude that lim
x→0+

y = lim
x→0+

eln y = e5 .

12. Use the DEFINITION of the derivative to find f ′(x) for f(x) = 1√
2x−3

.

We know that

f ′(x) = lim
h→0

f(x + h) − f(x)

h
= lim

h→0

1√
2(x+h)−3

− 1√
2x−3

h

= lim
h→0

√
2x − 3 −

√

2(x + h) − 3

h
√

2(x + h) − 3
√

2x − 3

= lim
h→0

2x − 3 − (2(x + h) − 3)

h
√

2(x + h) − 3
√

2x − 3(
√

2x − 3 +
√

2(x + h) − 3)

= lim
h→0

−2
√

2(x + h) − 3
√

2x − 3(
√

2x − 3 +
√

2(x + h) − 3)

=
−2√

2x − 3
√

2x − 3(
√

2x − 3 +
√

2x − 3)
=

−1√
2x − 3

√
2x − 3

√
2x − 3

= −(2x − 3)−
3
2 .
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13. Parameterize the diamond with vertices (1, 0) , (0, 1) , (−1, 0) , and
(0,−1) .

We start at t = 0 at the point (1, 0) and we move in a counter clock wise direction.
First we walk on the line y = 1 − x from t = 0 to t = 1 . Then we walk on
y = x + 1 from t = 1 to t = 2 . Then we walk on y = −x − 1 from t = 2 to
t = 3 . Finally, we walk on y = x−1 from t = 3 to t = 4 . So our parametrization
is:

x =



















1 − t for 0 ≤ t < 1

1 − t for 1 ≤ t < 2

t − 3 for 2 ≤ t < 3

t − 3 for 3 ≤ t ≤ 4

and y =



















t for 0 ≤ t < 1

2 − t for 1 ≤ t < 2

2 − t for 2 ≤ t < 3

t − 4 for 3 ≤ t ≤ 4

A picture appears of a different page.

14. The position of an object at time t is given by
{

x = 4 sin t
y = 3 cos t.

(a)Eliminate the parameter to find a Cartesian equation for the path of
the object.

(b)Graph the path of the object.
(c)On your graph, mark the position of the object at a few particular

values for time.

We know that sin2 t + cos2 t = 1 ; so, the answer to (a) is
x2

16
+

y2

9
= 1. The

answer to (b) is the ellipse with vertices (0, 3) (at time t = 0 ), (4, 0) (at time
t = π

2 ), (0,−3) (at t = π ), and (−4, 0) (at t = 3π
2 ). So the object travels around

the ellipse in a clockwise manner. The picture appears on a different page.

15. Let f(x) = 4x1/3 − x4/3 . Where is f(x) increasing, decreasing, concave
up, and concave down? What are the local extreme points and points
of inflection of y = f(x) . Find all vertical and horizontal asymptotes.
Graph y = f(x) .

We see that
f ′(x) = 4

3x−2/3 − 4
3x1/3 = 4

3x−2/3(1 − x).

So f ′(x) = 0 when x = 1 and f ′(x) does not exist when x = 0 . We see that
f ′(x) ≤ 0 for 1 < x , and f ′(x) ≥ 0 for x < 0 , also for 0 < x < 1 . We conclude
that:

f(x) is increasing for x < 1 and f(x) is decreasing for 1 < x,
(1, 3) is the only local maximum point on the graph, and
there are no local minimum points on the graph.
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We also see that

f ′′(x) = 4
3(− 2

3x−5/3 − 1
3x−2/3) = − 4

9x−5/3(2 + x).

Thus, f ′′(x) = 0 when x = −2 ; f ′′(x) does not exist for x = 0 . We see that
f ′′(x) ≥ 0 for −2 < x < 0 and that f ′′(x) < 0 for x < −2 , also for 0 < x . We
conclude that

f(x) is concave up for −2 < x < 0,
f(x) is concave down for x < −2, also for 0 < x,
(−2, f(−2)) and (0, 0) are the points of inflection.

There are no asymptotes. As x goes to +∞ or −∞ , the graph goes to −∞ ; so,
no vertical asymptotes. There are no numbers c with lim

x→c
f(x) equal to ±∞ ; so,

no horizontal asymptotes. The graph appears on a different piece of paper.

16. Each edge of a cube is increasing at the rate of 4 inches per second.
How fast is the surface area of the cube increasing when an edge is 12
inches long?

Let `(t) the the length of each edge of the cube at time t and S(t) be the surface
area of the cube at time t . We are told that d`

dt = 4 in/sec. We want dS
dt

∣

∣

`=12
.

We know that S = 6`2 . So dS
d` = 12` d`

dt . We conclude that

dS

dt

∣

∣

∣

∣

`=12

= (12)(12)4in2/sec

17. Consider the right circular cylinder of greatest volume that can be
inscribed in a right circular cone. What is the ratio of the volume of
the cylinder divided by the volume of the cone ?

A picture appears on a different page. Let r0 be the radius of the base of the cone
and h0 be the height of the cone. (Notice that r0 and h0 are constants.) Let r
be the radius of the base of cylinder and h be the height of the cylinder. (Notice
that we get to vary r and h .) Our job is to maximize V , which is the volume
of the cylinder. We know that V = πr2h . Let α be the ratio r/r0 . We express
everything in terms of the one variable α . Similar triangles (see the other page)
shows us that r

r0
= h0−h

h0
; so, α = 1− h

h0
; that is h

h0
= 1 − α , or h = (1 − α)h0 .

We now know that V = πr2
0h0α

2(1 − α) . The number πr2
0h0 is a constant. The

value of V is maximized when W (α) = α2(1 − α) is maximized for 0 < α < 1 .
We write W = α2 − α3 . We see that W ′ = 2α − 3α2 = α(2 − 3α) . So W ′(α) is
equal to zero when α = 0 or α = 2

3 . The graph of W (α) is zero at the endpoints,
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so W is maximized at the unique point in the domain of α where W ′(α) = 0 ;
namely, at α = 2

3 . For this choice of α , the volume of the cylinder is

πr2
0h0

4

9

1

3
.

The volume of the cone is equal to 1
3
πr2

0h0 . Thus, the ratio of the volume of the
cylinder divided by the volume of the cone of maximum volume is

πr2
0h0

4
9

1
3

1
3
πr2

0h0

=
4

9
.

18. State the Mean Value Theorem.

If f is a continuous function on the closed interval [a, b] , with f differentiable on
the open interval (a, b) , then there exists a number c ∈ (a, b) such that

f ′(c) =
f(b) − f(a)

b − a
.

19. Consider the region bounded by y = x2 , x = 1 , x = 2 , and the
x -axis. Partition the base into 50 subintervals of equal size. Over
each subinterval, imagine a rectangle which approximates, but OVER
estimates, the area under the curve. How much area is inside your 50
rectangles? (You must answer the question I asked, not some other
question. I expect an exact answer in closed form: no dots and no
summation signs.)

We have partitioned the closed interval [1, 2] into the 50 subintervals:
[1 + k−1

50
, 1 + k

50
] , for 1 ≤ k ≤ 50 . The function f(x) = x2 is increasing in the

region under consideration, so the maximum value of f(x) over the kth -subinterval
[1+ k−1

50 , 1+ k
50 ] occurs at the right end point 1+ k

50 . The area of the kth -rectangle

is 1
50(1 + k

50)2 . The area inside all 50 rectangles is

50
∑

k=1

1

50

(

1 +
k

50

)2

=
1

50

50
∑

k=1

(

1 + 2
k

50
+

k2

502

)

=
1

50

(

50
∑

k=1

1 +
2

50

50
∑

k=1

k +
1

502

50
∑

k=1

k2

)

=
1

50

(

50 +
2

50

50(51)

2
+

1

502

50(51)(101)

6

)

.
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20. The position of an object above the surface of the earth is given by

s(t) = −16t2 + 64t + 100,

where s is measured in feet and t is measured in seconds. How high
does the object get?

The object reaches its maximum height when s′(t) = 0 . We see that s′(t) =
−32t + 64 . Thus, s′(t) = 0 when t = 2 and the height at this moment is

s(2) = −64 + 2(64) + 100 = 164 ft

21. State BOTH parts of the Fundamental Theorem of Calculus.

Let f be a continuous function defined on the closed interval [a, b] .
(a) If A(x) is the function A(x) =

∫ x

a
f(t)dt , for all x ∈ [a, b] , then A′(x) = f(x)

for all x ∈ [a, b] .

(b) If F (x) is any antiderivative of f(x) , then
∫ b

a
f(x)dx = F (b) − F (a).

22. Let a and b be real numbers with −π
2

< a < b < π
2
. Prove that

tan b − tan a ≥ b − a .

We apply the Mean Value Theorem. We notice that the function tan x is
continuous on the closed interval [a, b] and differentiable on the open interval
(a, b) ; so, there exists a number c in (a, b) with

tan b − tan a

b − a
= sec2 c.

Of course, the value of sec2 c is always at least one. Thus,

tan b − tan a

b − a
≥ 1.

Multiply both sides of the inequality by the positive number b − a to get
tan b − tan a ≥ b − a .

23. Find the equations of the lines through the origin that are tangent to
2x2 − 4x + y2 + 1 = 0 .

Let P = (a, b) be a point on the curve. Take d
dx

of both sides of the equation of

the curve to see that 4x− 4 + 2y dy
dx = 0 . So, dy

dx = 2−2x
y , and the slope of the line

tangent to the curve at P is dy
dx
|P = 2−2a

b
. The equation of the line tangent to

the curve at P is y − b = 2−2a
b (x − a) . We hope to find all points P which are
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on the curve and also have (0, 0) sit on the line tangent to the curve at P . We
must solve

2a2 − 4a + b2 + 1 = 0 and − b =
2 − 2a

b
(−a)

simultaneously. We see that

b2 = 4a − 2a2 − 1 and b2 = 2a − 2a2.

So, 4a−2a2−1 = 2a−2a2 ; that is, 2a = 1 , or a = 1
2 . Once we know a , then we

know that b2 = 1 − 2( 1
4) ; so, b = ± 1√

2
. The line tangent to the curve at ( 1

2 , 1√
2
)

is y − 1√
2

=
√

2(x− 1
2 ) or y =

√
2x . The line tangent to the curve at ( 1

2 , −1√
2
) is

y + 1√
2

= −
√

2(x − 1
2
) or y = −

√
2x .


