Math 141, Final Exam, Fall 2005, Solution

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 23 problems. Problems 1 through 7 are worth 8 points each. Each of the other problems is worth 9 points. The exam is worth 200 points. SHOW your work. Make your work be coherent and clear. Write in complete sentences whenever this is possible. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. Otherwise, get your grade from VIP.

You might find the following formulas to be useful:

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \text { and } \quad \sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4} .
$$

I will post the solutions on my website a few hours after the exam is finished.

1. Let $y=2^{x}$. Find $\frac{d y}{d x}$.

The derivative is $\frac{d y}{d x}=(\ln 2) 2^{x}$.
2. Let $y=\cos (\cos x)$. Find $\frac{d y}{d x}$.

The derivative is $\frac{d y}{d x}=\sin x \sin (\cos x)$.
3. Let $y=x^{2}(\arcsin x)^{3}$. Find $\frac{d y}{d x}$.

The derivative is $\frac{d y}{d x}=\frac{3 x^{2}(\arcsin x)^{2}}{\sqrt{1-x^{2}}}+2 x(\arcsin x)^{3}$.
4. Let $y=\sin x\left(\int_{0}^{x} \sin \left(t^{2}\right) d t\right)$. Find $\frac{d y}{d x}$.

The derivative is $\frac{d y}{d x}=\sin x \sin \left(x^{2}\right)+\cos x\left(\int_{0}^{x} \sin \left(t^{2}\right) d t\right)$.

2
5. Find $\int_{1}^{2} x^{2} d x$.

The integral is

$$
\left.\frac{x^{3}}{3}\right|_{1} ^{2}=\frac{8}{3}-\frac{1}{3}=\frac{7}{3}
$$

6. Find $\int_{\frac{\pi}{12}}^{\frac{\pi}{9}} \sec ^{2} 3 \theta d \theta$.

The integral is

$$
\left.\frac{\tan 3 \theta}{3}\right|_{\frac{\pi}{12}} ^{\frac{\pi}{9}}=\frac{\tan \frac{\pi}{3}}{3}-\frac{\tan \frac{\pi}{4}}{3}=\frac{1}{3}(\sqrt{3}-1) .
$$

7. Find $\int_{-1}^{1} \frac{x^{2} d x}{\sqrt{x^{3}+9}}$.

The integral is

$$
\left.\frac{2 \sqrt{x^{3}+9}}{3}\right|_{-1} ^{1}=\frac{2 \sqrt{10}}{3}-\frac{2 \sqrt{8}}{3}
$$

8. Find $\int_{0}^{\frac{\sqrt{\pi}}{2}} 5 x \cos \left(x^{2}\right) d x$.

The integral is

$$
\left.\frac{5}{2} \sin \left(x^{2}\right)\right|_{0} ^{\frac{\sqrt{\pi}}{2}}=\frac{5}{2}\left(\sin \left(\frac{\pi}{4}\right)-\sin 0\right)=\frac{5 \sqrt{2}}{4}
$$

9. Find $\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \sum_{k=1}^{n} k^{2}$.

The limit is

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \frac{n(n+1)(2 n+1)}{6}=\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right)}{6}=\frac{1}{3} .
$$

10. Find $\lim _{x \rightarrow \infty} x^{2}-\sqrt{x^{4}+6 x^{2}}$.

The limit is

$$
\lim _{x \rightarrow \infty} \frac{x^{4}-\left(x^{4}+6 x^{2}\right)}{x^{2}+\sqrt{x^{4}+6 x^{2}}}=\lim _{x \rightarrow \infty} \frac{-6 x^{2}}{x^{2}+\sqrt{x^{4}+6 x^{2}}}=\lim _{x \rightarrow \infty} \frac{-6}{1+\sqrt{1+\frac{6}{x^{2}}}}=-3 .
$$

11. Find $\lim _{x \rightarrow 0^{+}} x^{\frac{5}{1+\ln x}}$.

Let $y=x^{\frac{5}{1+\ln x}}$. We see that

$$
\lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} \frac{5}{1+\ln x} \ln x=\lim _{x \rightarrow 0^{+}} \frac{5}{\frac{1}{\ln x}+1}=5 .
$$

We conclude that $\lim _{x \rightarrow 0^{+}} y=\lim _{x \rightarrow 0^{+}} e^{\ln y}=e^{5}$.
12. Use the DEFINITION of the derivative to find $f^{\prime}(x)$ for $f(x)=\frac{1}{\sqrt{2 x-3}}$.

We know that

$$
\begin{gathered}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{2(x+h)-3}}-\frac{1}{\sqrt{2 x-3}}}{h} \\
=\lim _{h \rightarrow 0} \frac{\sqrt{2 x-3}-\sqrt{2(x+h)-3}}{h \sqrt{2(x+h)-3} \sqrt{2 x-3}} \\
=\lim _{h \rightarrow 0} \frac{2 x-3-(2(x+h)-3)}{h \sqrt{2(x+h)-3} \sqrt{2 x-3}(\sqrt{2 x-3}+\sqrt{2(x+h)-3})} \\
=\lim _{h \rightarrow 0} \frac{-2}{\sqrt{2(x+h)-3} \sqrt{2 x-3}(\sqrt{2 x-3}+\sqrt{2(x+h)-3})} \\
=\frac{-2}{\sqrt{2 x-3} \sqrt{2 x-3}(\sqrt{2 x-3}+\sqrt{2 x-3})}=\frac{-1}{\sqrt{2 x-3} \sqrt{2 x-3} \sqrt{2 x-3}} \\
=-(2 x-3)^{-\frac{3}{2}} .
\end{gathered}
$$

13. Parameterize the diamond with vertices $(1,0),(0,1),(-1,0)$, and $(0,-1)$.
We start at $t=0$ at the point $(1,0)$ and we move in a counter clock wise direction. First we walk on the line $y=1-x$ from $t=0$ to $t=1$. Then we walk on $y=x+1$ from $t=1$ to $t=2$. Then we walk on $y=-x-1$ from $t=2$ to $t=3$. Finally, we walk on $y=x-1$ from $t=3$ to $t=4$. So our parametrization is:

$$
x=\left\{\begin{array}{ll}
1-t & \text { for } 0 \leq t<1 \\
1-t & \text { for } 1 \leq t<2 \\
t-3 & \text { for } 2 \leq t<3 \\
t-3 & \text { for } 3 \leq t \leq 4
\end{array} \quad \text { and } \quad y= \begin{cases}t & \text { for } 0 \leq t<1 \\
2-t & \text { for } 1 \leq t<2 \\
2-t & \text { for } 2 \leq t<3 \\
t-4 & \text { for } 3 \leq t \leq 4\end{cases}\right.
$$

A picture appears of a different page.
14. The position of an object at time t is given by

$$
\left\{\begin{array}{l}
x=4 \sin t \\
y=3 \cos t
\end{array}\right.
$$

(a)Eliminate the parameter to find a Cartesian equation for the path of the object.
(b)Graph the path of the object.
(c) On your graph, mark the position of the object at a few particular values for time.
We know that $\sin ^{2} t+\cos ^{2} t=1$; so, the answer to (a) is $\sqrt{\frac{x^{2}}{16}+\frac{y^{2}}{9}=1 \text {. The }}$ answer to (b) is the ellipse with vertices $(0,3)$ (at time $t=0$), (4, 0) (at time $\left.t=\frac{\pi}{2}\right),(0,-3)($ at $t=\pi)$, and $(-4,0)\left(\right.$ at $\left.t=\frac{3 \pi}{2}\right)$. So the object travels around the ellipse in a clockwise manner. The picture appears on a different page.
15. Let $f(x)=4 x^{1 / 3}-x^{4 / 3}$. Where is $f(x)$ increasing, decreasing, concave up, and concave down? What are the local extreme points and points of inflection of $y=f(x)$. Find all vertical and horizontal asymptotes. Graph $y=f(x)$.

We see that

$$
f^{\prime}(x)=\frac{4}{3} x^{-2 / 3}-\frac{4}{3} x^{1 / 3}=\frac{4}{3} x^{-2 / 3}(1-x) .
$$

So $f^{\prime}(x)=0$ when $x=1$ and $f^{\prime}(x)$ does not exist when $x=0$. We see that $f^{\prime}(x) \leq 0$ for $1<x$, and $f^{\prime}(x) \geq 0$ for $x<0$, also for $0<x<1$. We conclude that:
$f(x)$ is increasing for $x<1$ and $f(x)$ is decreasing for $1<x$,
$(1,3)$ is the only local maximum point on the graph, and
there are no local minimum points on the graph.

We also see that

$$
f^{\prime \prime}(x)=\frac{4}{3}\left(-\frac{2}{3} x^{-5 / 3}-\frac{1}{3} x^{-2 / 3}\right)=-\frac{4}{9} x^{-5 / 3}(2+x) .
$$

Thus, $f^{\prime \prime}(x)=0$ when $x=-2 ; f^{\prime \prime}(x)$ does not exist for $x=0$. We see that $f^{\prime \prime}(x) \geq 0$ for $-2<x<0$ and that $f^{\prime \prime}(x)<0$ for $x<-2$, also for $0<x$. We conclude that

$$
\begin{aligned}
& f(x) \text { is concave up for }-2<x<0, \\
& f(x) \text { is concave down for } x<-2 \text {, also for } 0<x, \\
& (-2, f(-2)) \text { and }(0,0) \text { are the points of inflection. }
\end{aligned}
$$

There are no asymptotes. As x goes to $+\infty$ or $-\infty$, the graph goes to $-\infty$; so, no vertical asymptotes. There are no numbers c with $\lim _{x \rightarrow c} f(x)$ equal to $\pm \infty$; so, no horizontal asymptotes. The graph appears on a different piece of paper.
16. Each edge of a cube is increasing at the rate of 4 inches per second. How fast is the surface area of the cube increasing when an edge is 12 inches long?
Let $\ell(t)$ the the length of each edge of the cube at time t and $S(t)$ be the surface area of the cube at time t. We are told that $\frac{d \ell}{d t}=4 \mathrm{in} / \mathrm{sec}$. We want $\left.\frac{d S}{d t}\right|_{\ell=12}$. We know that $S=6 \ell^{2}$. So $\frac{d S}{d \ell}=12 \ell \frac{d \ell}{d t}$. We conclude that

$$
\left.\frac{d S}{d t}\right|_{\ell=12}=(12)(12) 4 \mathrm{in}^{2} / \mathrm{sec}
$$

17. Consider the right circular cylinder of greatest volume that can be inscribed in a right circular cone. What is the ratio of the volume of the cylinder divided by the volume of the cone?

A picture appears on a different page. Let r_{0} be the radius of the base of the cone and h_{0} be the height of the cone. (Notice that r_{0} and h_{0} are constants.) Let r be the radius of the base of cylinder and h be the height of the cylinder. (Notice that we get to vary r and h.) Our job is to maximize V, which is the volume of the cylinder. We know that $V=\pi r^{2} h$. Let α be the ratio r / r_{0}. We express everything in terms of the one variable α. Similar triangles (see the other page) shows us that $\frac{r}{r_{0}}=\frac{h_{0}-h}{h_{0}}$; so, $\alpha=1-\frac{h}{h_{0}}$; that is $\frac{h}{h_{0}}=1-\alpha$, or $h=(1-\alpha) h_{0}$. We now know that $V=\pi r_{0}^{2} h_{0} \alpha^{2}(1-\alpha)$. The number $\pi r_{0}^{2} h_{0}$ is a constant. The value of V is maximized when $W(\alpha)=\alpha^{2}(1-\alpha)$ is maximized for $0<\alpha<1$. We write $W=\alpha^{2}-\alpha^{3}$. We see that $W^{\prime}=2 \alpha-3 \alpha^{2}=\alpha(2-3 \alpha)$. So $W^{\prime}(\alpha)$ is equal to zero when $\alpha=0$ or $\alpha=\frac{2}{3}$. The graph of $W(\alpha)$ is zero at the endpoints,
so W is maximized at the unique point in the domain of α where $W^{\prime}(\alpha)=0$; namely, at $\alpha=\frac{2}{3}$. For this choice of α, the volume of the cylinder is

$$
\pi r_{0}^{2} h_{0} \frac{4}{9} \frac{1}{3}
$$

The volume of the cone is equal to $\frac{1}{3} \pi r_{0}^{2} h_{0}$. Thus, the ratio of the volume of the cylinder divided by the volume of the cone of maximum volume is

$$
\frac{\pi r_{0}^{2} h_{0} \frac{4}{9} \frac{1}{3}}{\frac{1}{3} \pi r_{0}^{2} h_{0}}=\frac{4}{9} .
$$

18. State the Mean Value Theorem.

If f is a continuous function on the closed interval $[a, b]$, with f differentiable on the open interval (a, b), then there exists a number $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

19. Consider the region bounded by $y=x^{2}, x=1, x=2$, and the x-axis. Partition the base into 50 subintervals of equal size. Over each subinterval, imagine a rectangle which approximates, but OVER estimates, the area under the curve. How much area is inside your 50 rectangles? (You must answer the question I asked, not some other question. I expect an exact answer in closed form: no dots and no summation signs.)
We have partitioned the closed interval [1,2] into the 50 subintervals:
$\left[1+\frac{k-1}{50}, 1+\frac{k}{50}\right]$, for $1 \leq k \leq 50$. The function $f(x)=x^{2}$ is increasing in the region under consideration, so the maximum value of $f(x)$ over the $k^{\text {th }}$-subinterval $\left[1+\frac{k-1}{50}, 1+\frac{k}{50}\right]$ occurs at the right end point $1+\frac{k}{50}$. The area of the $k^{\text {th }}$-rectangle is $\frac{1}{50}\left(1+\frac{k}{50}\right)^{2}$. The area inside all 50 rectangles is

$$
\begin{aligned}
& \sum_{k=1}^{50} \frac{1}{50}\left(1+\frac{k}{50}\right)^{2}=\frac{1}{50} \sum_{k=1}^{50}\left(1+2 \frac{k}{50}+\frac{k^{2}}{50^{2}}\right) \\
& =\frac{1}{50}\left(\sum_{k=1}^{50} 1+\frac{2}{50} \sum_{k=1}^{50} k+\frac{1}{50^{2}} \sum_{k=1}^{50} k^{2}\right) \\
& =\frac{1}{50}\left(50+\frac{2}{50} \frac{50(51)}{2}+\frac{1}{50^{2}} \frac{50(51)(101)}{6}\right) .
\end{aligned}
$$

20. The position of an object above the surface of the earth is given by

$$
s(t)=-16 t^{2}+64 t+100
$$

where s is measured in feet and t is measured in seconds. How high does the object get?

The object reaches its maximum height when $s^{\prime}(t)=0$. We see that $s^{\prime}(t)=$ $-32 t+64$. Thus, $s^{\prime}(t)=0$ when $t=2$ and the height at this moment is $s(2)=-64+2(64)+100=164 \mathrm{ft}$

21. State BOTH parts of the Fundamental Theorem of Calculus.

Let f be a continuous function defined on the closed interval $[a, b]$.
(a) If $A(x)$ is the function $A(x)=\int_{a}^{x} f(t) d t$, for all $x \in[a, b]$, then $A^{\prime}(x)=f(x)$ for all $x \in[a, b]$.
(b) If $F(x)$ is any antiderivative of $f(x)$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
22. Let a and b be real numbers with $\frac{-\pi}{2}<a<b<\frac{\pi}{2}$. Prove that $\tan b-\tan a \geq b-a$.

We apply the Mean Value Theorem. We notice that the function $\tan x$ is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b); so, there exists a number c in (a, b) with

$$
\frac{\tan b-\tan a}{b-a}=\sec ^{2} c .
$$

Of course, the value of $\sec ^{2} c$ is always at least one. Thus,

$$
\frac{\tan b-\tan a}{b-a} \geq 1
$$

Multiply both sides of the inequality by the positive number $b-a$ to get $\tan b-\tan a \geq b-a$.
23. Find the equations of the lines through the origin that are tangent to $2 x^{2}-4 x+y^{2}+1=0$.

Let $P=(a, b)$ be a point on the curve. Take $\frac{d}{d x}$ of both sides of the equation of the curve to see that $4 x-4+2 y \frac{d y}{d x}=0$. So, $\frac{d y}{d x}=\frac{2-2 x}{y}$, and the slope of the line tangent to the curve at P is $\left.\frac{d y}{d x}\right|_{P}=\frac{2-2 a}{b}$. The equation of the line tangent to the curve at P is $y-b=\frac{2-2 a}{b}(x-a)$. We hope to find all points P which are
on the curve and also have $(0,0)$ sit on the line tangent to the curve at P. We must solve

$$
2 a^{2}-4 a+b^{2}+1=0 \quad \text { and } \quad-b=\frac{2-2 a}{b}(-a)
$$

simultaneously. We see that

$$
b^{2}=4 a-2 a^{2}-1 \quad \text { and } \quad b^{2}=2 a-2 a^{2} .
$$

So, $4 a-2 a^{2}-1=2 a-2 a^{2}$; that is, $2 a=1$, or $a=\frac{1}{2}$. Once we know a, then we know that $b^{2}=1-2\left(\frac{1}{4}\right)$; so, $b= \pm \frac{1}{\sqrt{2}}$. The line tangent to the curve at $\left(\frac{1}{2}, \frac{1}{\sqrt{2}}\right)$ is $y-\frac{1}{\sqrt{2}}=\sqrt{2}\left(x-\frac{1}{2}\right)$ or $y=\sqrt{2} x$. The line tangent to the curve at $\left(\frac{1}{2}, \frac{-1}{\sqrt{2}}\right)$ is $y+\frac{1}{\sqrt{2}}=-\sqrt{2}\left(x-\frac{1}{2}\right)$ or $y=-\sqrt{2} x$.

