Math 141, Exam 4, Fall 2005 Solutions

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 12 problems. Problems 1 through 4 are worth 9 points each. Problems 5 through 12 are worth 8 points each. The exam is worth 100 points. SHOW your work. Make your work be coherent and clear. Write in complete sentences whenever this is possible. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. I will post the solutions on my website a few hours after the exam is finished.

1. Find $\int \frac{d x}{e^{x}}$. Check your answer.

The problem is equal to $\int e^{-x} d x=-e^{-x}+C$.

2. Find $\int \sec 4 x \tan 4 x d x$. Check your answer.

Let $u=4 x$; so, $d u=4 d x$. The problem is equal to

$$
\frac{1}{4} \int \sec u \tan u d u=\frac{1}{4} \sec u=\frac{1}{4} \sec 4 x+C
$$

Check. The derivative of the proposed answer is

$$
\frac{1}{4} 4 \sec 4 x \tan 4 x . \checkmark
$$

3. Find $\int \frac{\sec ^{2} x d x}{\sqrt{1-\tan ^{2} x}}$. Check your answer.

Let $u=\tan x$; so, $d u=\sec ^{2} x d x$. The problem is equal to

$$
\int \frac{d u}{\sqrt{1-u^{2}}}=\arcsin u+C=\arcsin (\tan x)+C \text {. }
$$

Check. The derivative of the proposed answer is

$$
\frac{\sec ^{2} x}{\sqrt{1-\tan ^{2} x}} \cdot \checkmark
$$

4. Find $\lim _{\Delta x \rightarrow 0} \frac{\ln \left(e^{2}+\Delta x\right)-2}{\Delta x}$.

The top and the bottom both go to zero. We apply L'Hôpital's rule to see that the given limit is equal to

$$
\lim _{\Delta x \rightarrow 0} \frac{\frac{1}{e^{2}+\Delta x}}{1}=\frac{1}{e^{2}} .
$$

5. Find $\lim _{x \rightarrow 0^{+}} x^{\frac{\ln 2}{1+\ln x}}$.

The base goes to 0 . The exponent goes to 0 . This is an indeterminate form. We must be clever. Let $y=x^{\frac{\ln 2}{1+\ln x}}$. We see that

$$
\lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} \frac{\ln 2}{1+\ln x} \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln 2}{\frac{1}{\ln x}+1}=\ln 2 .
$$

It follows that the answer is

$$
\lim _{x \rightarrow 0^{+}} y=\lim _{x \rightarrow 0^{+}} e^{\ln y}=e^{\ln 2}=2 .
$$

6. Find $\lim _{x \rightarrow+\infty} \frac{x^{3}}{e^{-x}}$.

This limit is $\lim _{x \rightarrow+\infty} x^{3} e^{x}$. Both factors head to $+\infty$. There is no conflict. The answer is $+{ }^{x \rightarrow+\infty}$.
7. Find $\frac{d y}{d x}$ for $\sin \left(x^{2} y^{2}\right)=x$.

Take $\frac{d}{d x}$ of both sides to get

$$
\left(x^{2} 2 y \frac{d y}{d x}+2 x y^{2}\right) \cos \left(x^{2} y^{2}\right)=1
$$

Thus,

$$
\frac{d y}{d x}=\frac{1-2 x y^{2} \cos \left(x^{2} y^{2}\right)}{2 x^{2} y \cos \left(x^{2} y^{2}\right)}
$$

8. Find $\frac{d y}{d x}$ for $y=\ln \left(\sin ^{2} x\right)$.

We rewrite y as $y=2 \ln (\sin x)$. We compute $\frac{d y}{d x}=\frac{2 \cos x}{\sin x}$.
9. Find $\frac{d y}{d x}$ for $y=x^{\sin x}$.

Take \ln of both sides to get

$$
\ln y=\sin x \ln x
$$

Take $\frac{d}{d x}$ of both sides to get

$$
\frac{1}{y} \frac{d y}{d x}=\frac{\sin x}{x}+\cos x \ln x
$$

Solve for $\frac{d y}{d x}$:

$$
\frac{d y}{d x}=y\left(\frac{\sin x}{x}+\cos x \ln x\right)
$$

10. Find the coordinates of the point P on the curve

$$
y=\frac{1}{x^{2}} \quad \text { for } \quad x>0
$$

where the segment of the tangent line at P that is cut off by the coordinate axes has its shortest length.

Let $P=\left(a, \frac{1}{a^{2}}\right)$ be a point on the curve. The derivative of the equation for the curve is $\frac{d y}{d x}=-2 \frac{1}{x^{3}}$. So, the slope of the line tangent to the curve at P is $\frac{-2}{a^{3}}$ and the equation of the line tangent to the curve at P is $y-\frac{1}{a^{2}}=\frac{-2}{a^{3}}(x-a)$. The equation of the tangent line may be rewritten as

$$
y=\frac{-2 x}{a^{3}}+\frac{3}{a^{2}} .
$$

The tangent line hits the x-axis, when $y=0$; so $0=-2 x+3 a$. This is the point $Q=\left(\frac{3 a}{2}, 0\right)$. The tangent line hits the y-axis when $x=0$, so $y=\frac{3}{a^{2}}$. This is the point $R=\left(0, \frac{3}{a^{2}}\right)$. Our job is to pick a, with $a>0$ so that the distance from Q to R is minimized. The distance from Q to R is

$$
D=\sqrt{\left(\frac{3 a}{2}\right)^{2}+\left(\frac{3}{a^{2}}\right)^{2}} .
$$

We notice that D is minimized when the expression U, which sits under the radical, is minimized. Our job is to minimize

$$
U(a)=\left(\frac{3 a}{2}\right)^{2}+\left(\frac{3}{a^{2}}\right)^{2}, \quad \text { for } a>0
$$

We write $U(a)=\frac{9}{4} a^{2}+9 a^{-4}$. We see that U goes to infinity as a goes to zero and U goes to infinity as a goes to infinity. The minimum value of U will be attained at the point where $U^{\prime}(a)=0$. We calculate:

$$
U^{\prime}(a)=\frac{9}{2} a-36 a^{-5}=\frac{9}{2} a^{-5}\left(a^{6}-8\right)=\frac{9}{2} a^{-5}\left(a^{2}-2\right)\left(a^{4}+2 a^{2}+4\right) .
$$

The factor $a^{4}+2 a^{2}+4$ is always greater than zero (and hence never equal to zero). The only positive real number a with $U^{\prime}(a)=0$ is $a=\sqrt{2}$.

The point P on the curve for which the segment of the tangent line at P that is cut off by the coordinate axes has shortest length is $P=\left(\sqrt{2}, \frac{1}{2}\right)$.

I put a picture on the last page.
11. Let $f(x)=x^{2} \ln x$. Where is $f(x)$ increasing, decreasing, concave up, and concave down? What are the local maximum points, local minimum points, and points of inflection of $y=f(x)$. Find all vertical and horizontal asymptotes. What is the domain of $f(x)$? Graph $y=f(x)$.

The domain of $f(x)$ is all positive real numbers x because the domain of $\ln x$ is all positive real numbers x. We see that

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x^{2} \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-2}} .
$$

The top and the bottom both go to infinity so L'Hôpital's rule gives that

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-2 x^{-3}}=\lim _{x \rightarrow 0^{+}} \frac{x^{2}}{-2}=0
$$

Thus, the graph $y=f(x)$ never goes to infinity as x approaches a number. We conclude that

$$
\begin{array}{|l|}
\hline \text { There are no vertical asymptotes. } \\
\hline
\end{array}
$$

There is no difficulty taking the limit as x goes to ∞ of $f(x)$. Both factors go to ∞, so the limit is $+\infty$ and we conclude that

> | There are no horizontal asymptotes. |
| :--- |

Take the derivative to see

$$
f^{\prime}(x)=x^{2} \frac{1}{x}+2 x \ln x=x(1+2 \ln x)
$$

We see that $f^{\prime}(x)$ is zero (in the domain of f) only at $x=e^{-\frac{1}{2}}$. Thus,

$$
\begin{array}{|l}
f(x) \text { is decreasing for } 0<x<e^{-\frac{1}{2}}, \\
f(x) \text { is increasing for } e^{-\frac{1}{2}}<x, \\
\left(e^{-\frac{1}{2}}, f\left(e^{-\frac{1}{2}}\right)\right) \text { is the only local minimum point, and } \\
\text { there are no local maximum points. }
\end{array}
$$

Take the derivative to see that

$$
f^{\prime \prime}(x)=x \frac{2}{x}+(1+2 \ln x)=3+2 \ln x
$$

Thus, $f^{\prime}(x)=0$ at $x=e^{\frac{-3}{2}}$. Thus,

$$
\begin{array}{|l}
f(x) \text { is concave down } 0<x<e^{-\frac{3}{2}} \\
f(x) \text { is concave up for } e^{-\frac{3}{2}}<x, \text { and } \\
\left(e^{-\frac{1}{2}}, f\left(e^{-\frac{3}{2}}\right)\right) \text { is the only point of inflection. }
\end{array}
$$

I put the picture on the last page.
12. A boat is pulled into a dock by means of a rope attached to a pulley on the dock. (See the picture on the last page.) The rope is attached to the bow of the boat at a point 10 feet below the pulley. If the rope is pulled through the pulley at a rate of 20 feet/minute, at what rate will the boat be approaching the dock when 125 feet of rope are out?

Let x be the distance from the boat to the dock. Let z be the amount of rope out. We have a right triangle with vertical side 10 , horizontal side x, and hypotenuse z, see the picture on the last page. So, $x^{2}+100=z^{2}$. We are told that $\frac{d z}{d t}=-20$. We want $\frac{d x}{d t}$, when $z=125.2 x \frac{d x}{d t}=2 z \frac{d z}{d t}$. When $z=125$, then $x=\sqrt{(125)^{2}-100}$ and at that moment,

$$
\left|\frac{d x}{d t}\right|_{z=125 \text { feet }}=\frac{125}{\sqrt{(125)^{2}-100}}(-20) \frac{\text { feet }}{\text { minute }}
$$

