Math 141, Exam 3, Fall 2005

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 14 problems. Problem 1 is worth 9 points. Each other problem is worth 7 points. The exam is worth 100 points. SHOW your work. Make your work be coherent and clear. Write in complete sentences whenever this is possible. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will post the solutions on my website a few hours after the exam is finished.

1. Let $f(x)= \begin{cases}x^{2} & \text { for } x<1, \\ 2 x-1 & \text { for } 1 \leq x \leq 2 \\ 5-x & \text { for } 2<x<3 \\ x & \text { for } 3 \leq x .\end{cases}$
(a) Graph $y=f(x)$.
(b) Find

$\lim _{x \rightarrow 0^{+}} f(x)$	$\lim _{x \rightarrow 0^{-}} f(x)$	$\lim _{x \rightarrow 0} f(x)$	$f(0)$
$\lim _{x \rightarrow 1^{+}} f(x)$	$\lim _{x \rightarrow 1^{-}} f(x)$	$\lim _{x \rightarrow 1} f(x)$	$f(1)$
$\lim _{x \rightarrow 2^{+}} f(x)$	$\lim _{x \rightarrow 2^{-}} f(x)$	$\lim _{x \rightarrow 2} f(x)$	$f(2)$
$\lim _{x \rightarrow 3^{+}} f(x)$	$\lim _{x \rightarrow 3^{-}} f(x)$	$\lim _{x \rightarrow 3} f(x)$	$f(3)$
$\lim _{x \rightarrow 4^{+}} f(x)$	$\lim _{x \rightarrow 4^{-}} f(x)$	$\lim _{x \rightarrow 4} f(x)$	$f(4)$

(c) Where is $f(x)$ continuous?
(d) Where is $f(x)$ differentiable?
2. Find the derivative of $f(x)=3 x^{2}+\sqrt{2 x}+\frac{1}{4 x}+e$.
3. Parameterize the triangle whose vertices are $(1,0),(0,1)$, and $(-1,0)$.
4. Use the definition of the derivative to find the derivative of $f(x)=\sqrt{2 x-3}$.
5. Find $\lim _{n \rightarrow \infty}\left(\frac{n}{n-3}\right)^{n}$.
6. Find $\lim _{x \rightarrow 0} \frac{1-\cos 3 x}{x^{2}}$.
7. Find $\lim _{x \rightarrow \infty} \sqrt{x^{6}+5 x^{3}}-x^{3}$.
8. Find $\lim \frac{x^{6}-1}{x-1}$.
9. Find the equation of the line tangent to $x^{4}+y^{4}=16$ at $(1, \sqrt[4]{15})$.
10. Find the derivative of $f(x)=\sin \left(\ln \left(2 x^{2}+3 x\right)\right)$.
11. Find the derivative of $f(x)=e^{3 x^{2}+2 x} \tan x$.
12. Find the x-coordinates of all points on the graph of $y=1-x^{2}$ at which the tangent line passes through the point $(2,0)$.
13. The height of an object above the ground at time t is $s(t)=-16 t^{2}+32 t+48$, where s is measured in feet and t is measured in seconds. What is the velocity of the object when it strikes the ground?
14. A cube is growing at the constant rate of 1000 cubic inches per second. How fast is the surface area growing when each edge is 5 inches long?

