Math 141, Exam 3, Fall 2005 Solutions

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 14 problems. Problem 1 is worth 9 points. Each other problem is worth 7 points. The exam is worth 100 points. SHOW your work. Make your work be coherent and clear. Write in complete sentences whenever this is possible. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will post the solutions on my website a few hours after the exam is finished.

1. Let $f(x)= \begin{cases}x^{2} & \text { for } x<1, \\ 2 x-1 & \text { for } 1 \leq x \leq 2 \\ 5-x & \text { for } 2<x<3 \\ x & \text { for } 3 \leq x .\end{cases}$
(a) Graph $y=f(x)$.

The graph appears on a separate piece of paper. Be sure to notice that the graph is continuous and differentiable at $x=1$. The line tangent to $y=x^{2}$ at $x=1$ is $y=2 x-1$. The graph is continuous, but not differentiable at $x=2$, there is a sharp turn. The graph is neither continous nor differentiable at $x=3$
(b) Find

$$
\begin{array}{cccl}
\lim _{x \rightarrow 0^{+}} f(x)=0 & \lim _{x \rightarrow 0^{-}} f(x)=0 & \lim _{x \rightarrow 0} f(x)=0 & f(0)=0 \\
\lim _{x \rightarrow 1^{+}} f(x)=1 & \lim _{x \rightarrow 1^{-}} f(x)=1 & \lim _{x \rightarrow 1} f(x)=1 & f(1)=1 \\
\lim _{x \rightarrow 2^{+}} f(x)=3 & \lim _{x \rightarrow 2^{-}} f(x)=3 & \lim _{x \rightarrow 2} f(x)=3 & f(2)=3 \\
\lim _{x \rightarrow 3^{+}} f(x)=3 & \lim _{x \rightarrow 3^{-}} f(x)=2 & \lim _{x \rightarrow 3} f(x)=\text { DNE } & f(3)=3 \\
\lim _{x \rightarrow 4^{+}} f(x)=4 & \lim _{x \rightarrow 4-} f(x)=4 & \lim _{x \rightarrow 4} f(x)=4 & f(4)=4
\end{array}
$$

(c) Where is $f(x)$ continuous?

The function $f(x)$ is continuous everywhere, except at $x=3$.
(d) Where is $f(x)$ differentiable?

The function $f(x)$ is differentiable everywhere, except at $x=2$ and $x=3$.
2. Find the derivative of $f(x)=3 x^{2}+\sqrt{2 x}+\frac{1}{4 x}+e$.

$$
f^{\prime}(x)=6 x+\frac{2}{2 \sqrt{2 x}}-\frac{4}{(4 x)^{2}}
$$

3. Parameterize the triangle whose vertices are $(1,0),(0,1)$, and $(-1,0)$.

I will start at at $t=0$ at $(1,0)$. I will walk along the triangle in a counter clockwise manner. I will reach $(0,1)$ at $t=1,(-1,0)$ at $t=2$, and I will return to $(1,0)$ at $t=3$. (One could take other trips around this triangle.)

$$
x(t)=\left\{\begin{array}{ll}
1-t & \text { if } 0 \leq t \leq 1 \\
1-t & \text { if } 1 \leq t \leq 2 \\
2(t-3)+1 & \text { if } 2 \leq t \leq 3
\end{array} \text { and } y(t)= \begin{cases}t & \text { if } 0 \leq t \leq 1 \\
2-t & \text { if } 1 \leq t \leq 2 \\
0 & \text { if } 2 \leq t \leq 3\end{cases}\right.
$$

For each leg of my journey I merely parameterized the line segment in question.
4. Use the definition of the derivative to find the derivative of $f(x)=$ $\sqrt{2 x-3}$.

$$
\begin{gathered}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{2(x+h)-3}-\sqrt{2 x-3}}{h} \\
=\lim _{h \rightarrow 0} \frac{(\sqrt{2(x+h)-3}-\sqrt{2 x-3})(\sqrt{2(x+h)-3}+\sqrt{2 x-3})}{h(\sqrt{2(x+h)-3}+\sqrt{2 x-3})} \\
=\lim _{h \rightarrow 0} \frac{(2(x+h)-3-(2 x-3))}{h(\sqrt{2(x+h)-3}+\sqrt{2 x-3})}=\lim _{h \rightarrow 0} \frac{2 x+2 h-3-2 x+3}{h(\sqrt{2(x+h)-3}+\sqrt{2 x-3})} \\
=\lim _{h \rightarrow 0} \frac{2 h}{h(\sqrt{2(x+h)-3}+\sqrt{2 x-3})}=\lim _{h \rightarrow 0} \frac{2}{(\sqrt{2(x+h)-3}+\sqrt{2 x-3})} \\
=\frac{2}{(\sqrt{2 x-3}+\sqrt{2 x-3})}=\frac{2}{2 \sqrt{2 x-3}}=\frac{1}{\sqrt{2 x-3}} .
\end{gathered}
$$

5. Find $\lim _{n \rightarrow \infty}\left(\frac{n}{n-3}\right)^{n}$.

Let $t=n-3$. Notice that as n goes to ∞, so does t. We see that

$$
\lim _{n \rightarrow \infty}\left(\frac{n}{n-3}\right)^{n}=\lim _{t \rightarrow \infty}\left(\frac{t+3}{t}\right)^{t+3}=\lim _{t \rightarrow \infty}(1+3 / t)^{t} \lim _{t \rightarrow \infty}(1+3 / t)^{3}
$$

We know that the limit of a product is the product of the limits. We also know that $\lim _{t \rightarrow \infty}\left(1+\frac{r}{t}\right)^{t}=e^{r}$. The answer to this problem is e^{3}.
6. Find $\lim _{x \rightarrow 0} \frac{1-\cos 3 x}{x^{2}}$.

Multiply top and bottom by $1+\cos 3 x$ to see that our problem is equal to

$$
\lim _{x \rightarrow 0} \frac{1-\cos ^{2} 3 x}{x^{2}(1+\cos 3 x)}=\lim _{x \rightarrow 0} \frac{\sin ^{2} 3 x}{x^{2}(1+\cos 3 x)}=\lim _{x \rightarrow 0} 9 \frac{\sin 3 x}{3 x} \frac{\sin 3 x}{3 x} \frac{1}{(1+\cos 3 x)} .
$$

We know that $\lim _{t \rightarrow 0} \frac{\sin t}{t}=1$. Apply this fact twice with $3 x$ playing the role of t to conclude that the limit is | $\frac{9}{2}$ |
| :--- | .

7. Find $\lim _{x \rightarrow \infty} \sqrt{x^{6}+5 x^{3}}-x^{3}$.

Multiply top and bottom by $\sqrt{x^{6}+5 x^{3}}+x^{3}$ to see that our problem is equal to

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{x^{6}+5 x^{3}-x^{6}}{\sqrt{x^{6}+5 x^{3}}+x^{3}} \\
= & \lim _{x \rightarrow \infty} \frac{5 x^{3}}{\sqrt{x^{6}+5 x^{3}}+x^{3}} .
\end{aligned}
$$

Divide top and bottom by x^{3}. Recall that $x^{3}=\sqrt{x^{6}}$ for positive x. Our limit is

$$
=\lim _{x \rightarrow \infty} \frac{5}{\sqrt{1+\frac{5}{x^{3}}}+1}=\frac{5}{2} .
$$

8. Find $\lim _{x \rightarrow 1} \frac{x^{6}-1}{x-1}$.

Divide. The limit is equal to

$$
\lim _{x \rightarrow 1}\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)=6
$$

A cute way to do the problem is to notice that the limit computes $f^{\prime}(1)$, where $f(x)=x^{6}$. Again, the answer is 6 .
9. Find the equation of the line tangent to $x^{4}+y^{4}=16$ at $(1, \sqrt[4]{15})$.

Take $\frac{d}{d x}$ of both sides $4 x^{3}+4 y^{3} \frac{d y}{d x}=0$. So, $\frac{d y}{d x}=\frac{-x^{3}}{y^{3}}$. So $\left.\frac{d y}{d x}\right|_{(1, \sqrt[4]{15})}=\frac{-1}{(\sqrt[4]{15})^{3}}$ and the tangent line is

$$
y-\sqrt[4]{15}=\frac{-1}{(\sqrt[4]{15})^{3}}(x-1)
$$

10. Find the derivative of $f(x)=\sin \left(\ln \left(2 x^{2}+3 x\right)\right)$.

$$
f^{\prime}(x)=\frac{(4 x+3) \cos \left(\ln \left(2 x^{2}+3 x\right)\right)}{2 x^{2}+3 x}
$$

11. Find the derivative of $f(x)=e^{3 x^{2}+2 x} \tan x$.

$$
f^{\prime}(x)=e^{3 x^{2}+2 x} \sec ^{2} x+(6 x+2) e^{3 x^{2}+2 x} \tan x
$$

12. Find the x-coordinates of all points on the graph of $y=1-x^{2}$ at which the tangent line passes through the point $(2,0)$.

Let $\left(a, 1-a^{2}\right)$ be a point on the parabola. We see that $y^{\prime}=-2 x$. So the slope of the line tangent to $y=1-x^{2}$ at the point $\left(a, 1-a^{2}\right)$ is $-2 a$ and the tangent line is $y-\left(1-a^{2}\right)=-2 a(x-a)$. We want to find all a so that the tangent line passes through $(2,0)$. So we want all a for which $(2,0)$ satisfies the equation of the tangent line:

$$
\begin{gathered}
0-\left(1-a^{2}\right)=-2 a(2-a) \\
-1+a^{2}=-4 a+2 a^{2} \\
0=a^{2}-4 a+1 .
\end{gathered}
$$

Use the quadratic formula to find a :

$$
a=\frac{4 \pm \sqrt{16-4}}{2}=\frac{4 \pm 2 \sqrt{3}}{2}=2 \pm \sqrt{3} .
$$

The points we are to find have x-cordinate $2+\sqrt{3}$ or $2-\sqrt{3}$.
13. The height of an object above the ground at time t is $s(t)=$ $-16 t^{2}+32 t+48$, where s is measured in feet and t is measured in seconds. What is the velocity of the object when it strikes the ground?

The object hits the ground when $s(t)=0$; so $0=-16\left(t^{2}-2 t-3\right)=$ $-16(t-3)(t+1)$. So the object hits the ground when $t=3$ or $t=-1$. (Of course, we are not interested in $t=-1$.) $v(t)=s^{\prime}(t)=-32 t+32$. The velocity when the object hits the ground is $s^{\prime}(3)=-32(3)+32=-64$ feet/second
14. A cube is growing at the constant rate of 1000 cubic inches per second. How fast is the surface area growing when each edge is 5 inches long?

Let V be the volume of the cube at time t, A be the surface area of the cube at time t, and ℓ the the length of each edge at time t. We are told $\frac{d V}{d t}=1000 \mathrm{in}^{3} / \mathrm{sec}$. We want $\left.\frac{d A}{d t}\right|_{\ell=5 \mathrm{in}}$. We know $V=\ell^{3}$ and $A=6 \ell^{2}$. There are 6 faces: top, bottom, left, right, back and front. So, $\frac{d V}{d t}=3 \ell^{2} \frac{d \ell}{d t}$ and $\frac{d A}{d t}=12 \ell \frac{d \ell}{d t}$. It follows that

$$
\frac{d A}{d t}=12 \ell \frac{d V}{d t} \frac{1}{3 \ell^{2}}=\frac{d V}{d t} \frac{4}{\ell}
$$

and

$$
\left.\frac{d A}{d t}\right|_{\ell=5 \mathrm{in}}=1000 \mathrm{in}^{3} / \mathrm{sec} \frac{4}{5 \mathrm{in}}=800 \mathrm{in}^{2} / \mathrm{sec} .
$$

