Math 141, Exam 2, Fall 2005

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 10 problems; each problem is worth 10 points. SHOW your work. Make your work be coherent and clear. Write in complete sentences whenever this is possible. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.
I will post the solutions on my website shortly a few hours after the exam is finished.

1. Find $\lim _{x \rightarrow 0^{-}}(1+3 x)^{\frac{4}{x}}$.
2. Find $\lim _{x \rightarrow 0} \frac{1-\cos 3 x}{x^{2}}$.
3. Find $\lim _{x \rightarrow \infty} \sqrt{x^{2}-10 x}-\sqrt{x^{2}+4 x}$.
4. Find a system of parametric equations which parameterizes $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$.
5. The position of an object at time t is given by

$$
\left\{\begin{array}{l}
x=t-1 \\
y=t^{2}+2
\end{array}\right.
$$

(a) Eliminate the parameter to find a Cartesian equation for the path of the object.
(b) Graph the path of the object.
(c) On your graph, mark the position of the object at a few particular values for time.
6. Solve $e^{-2 x}-3 e^{-x}=-2$.
7. Solve $\ln (4 x)-3 \ln \left(x^{2}\right)=\ln 2$.
8. Simplify $\sin \left(\cos ^{-1} x\right)$. Your answer should not contain any Trig functions or inverse Trig functions.
9. Find an equation for the family of lines that pass through the intersection of $5 x-3 y+11=0$ and $2 x-9 y+7=0$.
10. Let $f(x)=\frac{x-2}{x+3}$.
(a) What is the domain of f ?
(b) Find a formula for $f^{-1}(x)$.
(c) What is the domain of f^{-1} ?
(d) Verify that $f\left(f^{-1}(x)\right)=x$ for all x in the domain of f^{-1}.
(e) Verify that $f^{-1}(f(x))=x$ for all x in the domain of f.

