Math 141, Exam 2, Fall 2005

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.
There are 10 problems; each problem is worth 10 points. SHOW your work. Make your work be coherent and clear. Write in complete sentences whenever this is possible. CIRCLE your answer. CHECK your answer whenever possible. No

Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will post the solutions on my website shortly a few hours after the exam is finished.

1. Find $\lim _{x \rightarrow 0^{-}}(1+3 x)^{\frac{4}{x}}$.

Let $t=-\frac{1}{x}$. As x goes to zero from below, we see that t goes to $+\infty$. The original problem is the same as

$$
\lim _{t \rightarrow \infty}\left(1+\frac{-3}{t}\right)^{-4 t}
$$

If c is a constant, then $\lim \left(f^{c}\right)$ is equal to $(\lim f)^{c}$ provided $\lim f$ exists. It follows that our limits is equal to

$$
\left(\lim _{t \rightarrow \infty}\left(1+\frac{-3}{t}\right)^{t}\right)^{-4}
$$

We learned that for any constant $r \lim _{t \rightarrow \infty}\left(1+\frac{r}{t}\right)^{t}=e^{r}$; and therefore, our answer is

$$
\left(e^{-3}\right)^{-4}=e^{12} .
$$

2. Find $\lim _{x \rightarrow 0} \frac{1-\cos 3 x}{x^{2}}$.

Multiply top and bottom by $1+\cos 3 x$ to see that our problem is equal to

$$
\lim _{x \rightarrow 0} \frac{1-\cos ^{2} 3 x}{x^{2}(1+\cos 3 x)}=\lim _{x \rightarrow 0} \frac{\sin ^{2} 3 x}{x^{2}(1+\cos 3 x)}=\lim _{x \rightarrow 0} 9 \frac{\sin 3 x}{3 x} \frac{\sin 3 x}{3 x} \frac{1}{(1+\cos 3 x)} .
$$

We know that $\lim _{t \rightarrow 0} \frac{\sin t}{t}=1$. Apply this fact twice with $3 x$ playing the role of t to conclude that the limit is | $\frac{9}{2}$ |
| :--- |
| . |

3. Find $\lim _{x \rightarrow \infty} \sqrt{x^{2}-10 x}-\sqrt{x^{2}+4 x}$.

Multiply top and bottom by $\sqrt{x^{2}-10 x}+\sqrt{x^{2}+4 x}$ to see that the limit is

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-10 x-\left(x^{2}+4 x\right)}{\sqrt{x^{2}-10 x}+\sqrt{x^{2}+4 x}}=\lim _{x \rightarrow \infty} \frac{-14 x}{\sqrt{x^{2}-10 x}+\sqrt{x^{2}+4 x}}
$$

Divide top and bottom by x. Keep in mind that when x is positive $x=\sqrt{x^{2}}$. Our limit is

$$
=\lim _{x \rightarrow \infty} \frac{-14}{\sqrt{1-\frac{10}{x}}+\sqrt{1+\frac{4}{x}}}=-7 \text {. }
$$

4. Find a system of parametric equations which parameterizes $\frac{x^{2}}{9}+\frac{y^{2}}{16}=$ 1.

The easiest parameterization of this ellipse is:

$$
\left\{\begin{array}{l}
x=3 \cos t \\
y=4 \sin t
\end{array}\right.
$$

Notice that if one eliminates the parameter, then the resulting Cartesian equation is $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$. My parameterization starts at $(3,0)$ at $t=0$ and moves counterclockwise. The first time that the object returns to $(3,0)$ is $t=2 \pi$.
5. The position of an object at time t is given by

$$
\left\{\begin{array}{l}
x=t-1 \\
y=t^{2}+2
\end{array}\right.
$$

(a) Eliminate the parameter to find a Cartesian equation for the path of the object.
$y=(x+1)^{2}+2$.
(b) Graph the path of the object.

See a different page.
(c) On your graph, mark the position of the object at a few particular values for time.

See a different page.
6. Solve $e^{-2 x}-3 e^{-x}=-2$.

Factor $e^{-2 x}-3 e^{-x}+2=0$ to get $\left(e^{-x}-1\right)\left(e^{-x}-2\right)=0$. So, $e^{-x}=1$ or $e^{-x}=2$. Take the natural logarithm of each side $-x=\ln 1$ or $-x=\ln 2$. Of course, we know that $\ln 1=0$. We conclude that $x=0$ or $x=-\ln 2$.
7. Solve $\ln (4 x)-3 \ln \left(x^{2}\right)=\ln 2$.

Exponentiate with base e to see that

$$
\begin{gathered}
e^{\ln (4 x)-3 \ln \left(x^{2}\right)}=e^{\ln 2} \\
e^{\ln (4 x)} e^{-3 \ln \left(x^{2}\right)}=2 \\
\frac{4 x}{x^{6}}=2
\end{gathered}
$$

Thus $2=x^{5}$ and $x=\sqrt[5]{2}$.
8. Simplify $\sin \left(\cos ^{-1} x\right)$. Your answer should not contain any Trig functions or inverse Trig functions.

Draw a right triangle and lable one of the non-right angles as $\cos ^{-1} x$. So, the adjacent side has length x and the hypotenuse has length 1 . Use the pythagorean theorem to see that the opposite has length $\sqrt{1-x^{2}}$. In other words, $\sin \left(\cos ^{-1} x\right)$, which is equal to the oposite over the hypotenuse, is $\sqrt{\sqrt{1-x^{2}}}$.
9. Find an equation for the family of lines that pass through the intersection of $5 x-3 y+11=0$ and $2 x-9 y+7=0$.

We first find the intersection. Multiply the first equation by -2 and add this to 5 times the second equation. The result is $-39 y+13=0$; so $y=\frac{1}{3}$. Plug this value for y into either equation to see that the x-coordinate of the intersection is $x=-2$. The point of intersection is $\left(-2, \frac{1}{3}\right)$. Every line has the form $a x+b y+c=0$. We leave a and b arbitrary, but choose c so that $\left(-2, \frac{1}{3}\right)$ satisfies the equation. So, $-2 a+\frac{1}{3} b+c=0$. In other words, $c=2 a-\frac{1}{3} b$ and our family of lines is: $a x+b y+2 a-\frac{1}{3} b=0$. Notice that the first equation is the member of our family when $a=5$ and $b=-3$; and the second equation is the member of our family when $a=2$ and $b=-9$.
10. Let $f(x)=\frac{x-2}{x+3}$.
(a) What is the domain of f ?

The domain of f is all real x except -3 .
(b) Find a formula for $f^{-1}(x)$.

Let $y=f^{-1}(x)$. So $f(y)=x$. In other words,

$$
\frac{y-2}{y+3}=x
$$

We want to find y. Multiply both sides by $y+3$. The result is the following linear expression in y :

$$
y-2=x(y+3) .
$$

We can always solve a linear expression. Get all of the y 's on one side and all of the terms without y on the other side. So,

$$
-2-3 x=y(x-1)
$$

or $y=\frac{-2-3 x}{x-1}$. Thus,

$$
f^{-1}(x)=\frac{-2-3 x}{x-1} .
$$

(c) What is the domain of f^{-1} ?

The domain of f^{-1} is all real x except 1 .
(d) Verify that $f\left(f^{-1}(x)\right)=x$ for all x in the domain of f^{-1}.

Take $x \neq 1$. We see that

$$
f\left(f^{-1}(x)\right)=f\left(\frac{-2-3 x}{x-1}\right)=\frac{\frac{-2-3 x}{x-1}-2}{\frac{-2-3 x}{x-1}+3}=\frac{-2-3 x-2(x-1)}{-2-3 x+3(x-1)}=\frac{-5 x}{-5}=x . \checkmark
$$

(e) Verify that $f^{-1}(f(x))=x$ for all x in the domain of f.

Take $x \neq-3$. We see that

$$
\begin{gathered}
f^{-1}(f(x))=f^{-1}\left(\frac{x-2}{x+3}\right)=\frac{-2-3\left(\frac{x-2}{x+3}\right)}{\frac{x-2}{x+3}-1}=\frac{-2(x+3)-3(x-2)}{x-2-(x+3)}=\frac{-5 x}{-5} \\
=x .
\end{gathered}
$$

