Math 141, Exam 2, Fall 2005

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 10 problems; each problem is worth 10 points. SHOW your work. Make your work be coherent and clear. Write in complete sentences whenever this is possible. *CIRCLE* your answer. **CHECK** your answer whenever possible. **No Calculators.**

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

I will post the solutions on my website shortly a few hours after the exam is finished.

1. Find $\lim_{x\to 0^-} (1+3x)^{\frac{4}{x}}$.

Let $t = -\frac{1}{x}$. As x goes to zero from below, we see that t goes to $+\infty$. The original problem is the same as

$$\lim_{t \to \infty} \left(1 + \frac{-3}{t} \right)^{-4t}$$

If c is a constant, then $\lim(f^c)$ is equal to $(\lim f)^c$ provided $\lim f$ exists. It follows that our limits is equal to

$$\left(\lim_{t\to\infty}\left(1+\frac{-3}{t}\right)^t\right)^{-4}$$

We learned that for any constant $r \lim_{t \to \infty} \left(1 + \frac{r}{t}\right)^t = e^r$; and therefore, our answer is

$$(e^{-3})^{-4} = e^{12}.$$

2. Find $\lim_{x \to 0} \frac{1 - \cos 3x}{x^2}$.

Multiply top and bottom by $1 + \cos 3x$ to see that our problem is equal to

$$\lim_{x \to 0} \frac{1 - \cos^2 3x}{x^2(1 + \cos 3x)} = \lim_{x \to 0} \frac{\sin^2 3x}{x^2(1 + \cos 3x)} = \lim_{x \to 0} 9 \frac{\sin 3x}{3x} \frac{\sin 3x}{3x} \frac{1}{(1 + \cos 3x)}.$$

We know that $\lim_{t \to 0} \frac{\sin t}{t} = 1$. Apply this fact twice with $3x$ playing the role of t to conclude that the limit is $\boxed{\frac{9}{2}}$.

3. Find
$$\lim_{x \to \infty} \sqrt{x^2 - 10x} - \sqrt{x^2 + 4x}$$

Multiply top and bottom by $\sqrt{x^2 - 10x} + \sqrt{x^2 + 4x}$ to see that the limit is

$$\lim_{x \to \infty} \frac{x^2 - 10x - (x^2 + 4x)}{\sqrt{x^2 - 10x} + \sqrt{x^2 + 4x}} = \lim_{x \to \infty} \frac{-14x}{\sqrt{x^2 - 10x} + \sqrt{x^2 + 4x}}$$

Divide top and bottom by x. Keep in mind that when x is positive $x = \sqrt{x^2}$. Our limit is

$$= \lim_{x \to \infty} \frac{-14}{\sqrt{1 - \frac{10}{x}} + \sqrt{1 + \frac{4}{x}}} = \boxed{-7}.$$

4. Find a system of parametric equations which parameterizes $\frac{x^2}{9} + \frac{y^2}{16} = 1$.

The easiest parameterization of this ellipse is:

$$\begin{cases} x = 3\cos t\\ y = 4\sin t \end{cases}$$

Notice that if one eliminates the parameter, then the resulting Cartesian equation is $\frac{x^2}{9} + \frac{y^2}{16} = 1$. My parameterization starts at (3,0) at t = 0 and moves counterclockwise. The first time that the object returns to (3,0) is $t = 2\pi$.

5. The position of an object at time t is given by

$$\begin{cases} x = t - 1\\ y = t^2 + 2. \end{cases}$$

(a) Eliminate the parameter to find a Cartesian equation for the path of the object.

$$y = (x+1)^2 + 2$$

(b) Graph the path of the object.

See a different page.

(c) On your graph, mark the position of the object at a few particular values for time.

See a different page.

 $\mathbf{2}$

6. Solve $e^{-2x} - 3e^{-x} = -2$.

Factor $e^{-2x} - 3e^{-x} + 2 = 0$ to get $(e^{-x} - 1)(e^{-x} - 2) = 0$. So, $e^{-x} = 1$ or $e^{-x} = 2$. Take the natural logarithm of each side $-x = \ln 1$ or $-x = \ln 2$. Of course, we know that $\ln 1 = 0$. We conclude that x = 0 or $x = -\ln 2$.

7. Solve $\ln(4x) - 3\ln(x^2) = \ln 2$.

Exponentiate with base e to see that

$$e^{\ln(4x) - 3\ln(x^2)} = e^{\ln 2}$$

 $e^{\ln(4x)}e^{-3\ln(x^2)} = 2$
 $\frac{4x}{x^6} = 2$

Thus $2 = x^5$ and $x = \sqrt[5]{2}$.

8. Simplify $\sin(\cos^{-1} x)$. Your answer should not contain any Trig functions or inverse Trig functions.

Draw a right triangle and lable one of the non-right angles as $\cos^{-1} x$. So, the adjacent side has length x and the hypotenuse has length 1. Use the pythagorean theorem to see that the opposite has length $\sqrt{1-x^2}$. In other words, $\sin(\cos^{-1} x)$, which is equal to the oposite over the hypotenuse, is $\sqrt{1-x^2}$.

9. Find an equation for the family of lines that pass through the intersection of 5x - 3y + 11 = 0 and 2x - 9y + 7 = 0.

We first find the intersection. Multiply the first equation by -2 and add this to 5 times the second equation. The result is -39y + 13 = 0; so $y = \frac{1}{3}$. Plug this value for y into either equation to see that the x-coordinate of the intersection is x = -2. The point of intersection is $(-2, \frac{1}{3})$. Every line has the form ax + by + c = 0. We leave a and b arbitrary, but choose c so that $(-2, \frac{1}{3})$ satisfies the equation. So, $-2a + \frac{1}{3}b + c = 0$. In other words, $c = 2a - \frac{1}{3}b$ and our family of lines is: $\boxed{ax + by + 2a - \frac{1}{3}b = 0}$. Notice that the first equation is the member of our family when a = 5 and b = -3; and the second equation is the member of our family when a = 2 and b = -9. 10. Let $f(x) = \frac{x-2}{x+3}$.

(a) What is the domain of f?

The domain of f is all real x except -3.

(b) Find a formula for $f^{-1}(x)$.

Let $y = f^{-1}(x)$. So f(y) = x. In other words,

$$\frac{y-2}{y+3} = x.$$

We want to find y. Multiply both sides by y + 3. The result is the following linear expression in y:

$$y - 2 = x(y + 3).$$

We can always solve a linear expression. Get all of the y's on one side and all of the terms without y on the other side. So,

$$-2 - 3x = y(x - 1)$$

or $y = \frac{-2-3x}{x-1}$. Thus,

$$f^{-1}(x) = \frac{-2 - 3x}{x - 1}$$

(c) What is the domain of f^{-1} ?

The domain of f^{-1} is all real x except 1. (d) Verify that $f(f^{-1}(x)) = x$ for all x in the domain of f^{-1} . Take $x \neq 1$. We see that

$$f(f^{-1}(x)) = f\left(\frac{-2-3x}{x-1}\right) = \frac{\frac{-2-3x}{x-1}-2}{\frac{-2-3x}{x-1}+3} = \frac{-2-3x-2(x-1)}{-2-3x+3(x-1)} = \frac{-5x}{-5} = x. \checkmark$$

(e) Verify that $f^{-1}(f(x)) = x$ for all x in the domain of f.

Take $x \neq -3$. We see that

$$f^{-1}(f(x)) = f^{-1}\left(\frac{x-2}{x+3}\right) = \frac{-2-3\left(\frac{x-2}{x+3}\right)}{\frac{x-2}{x+3}-1} = \frac{-2(x+3)-3(x-2)}{x-2-(x+3)} = \frac{-5x}{-5}$$
$$= x. \checkmark$$