Math 141, Exam 1, Fall 2005

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

The exam is worth a total of 100 points. SHOW your work. Make your work be coherent and clear. Write in complete sentences whenever this is possible. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

I will post the solutions on my website shortly a few hours after the exam is finished.

1. (20 points) Graph $y=x^{2}, y=(x-1)^{2}$, and $y=x^{2}+1$.
2. (20 points) Graph $y=x^{1 / 3}, y=x^{2 / 3}$, and $y^{2}=x^{1 / 3}$.
3. (10 points) Find all lines through $(6,-1)$ for which the product of the x and y intercepts is 3 .
4. (10 points) Compute $\sin \left(\cos ^{-1}(2 / 3)+\cos ^{-1}(1 / 3)\right)$.
5. (10 points) Solve $1+3 \log _{2} x=\log _{2}(3 x)$.
6. (20 points) Let $f(x)=x-5 x^{2}$ for $x \leq \frac{1}{10}$.
(a) Find a formula for $f^{-1}(x)$.
(b) What is the domain of $f^{-1}(x)$?
(c) Verify that $f\left(f^{-1}(x)\right)=x$ for all x in the domain of f^{-1}.
(d) Verify that $f^{-1}(f(x))=x$ for all x in the domain of f.
7. (10 points) An open box is to be constructed from a rectangular sheet of metal, 8 inches by 15 inches, by cutting out squares with sides of length x from each corner and bending up the sides. Express the volume V as a function of x.
