Math 141, Exam 1, 1999
PRINT Your Name: \qquad Recitation Time
There are 9 problems on 4 pages. Each problem, unless otherwise noted, is worth 10 points. In one problem you are instructed to use the definition of the derivative; you MUST use the definition of the derivative in that problem. In the other problems you may use any legitimate derivative rule. SHOW your work. CIRCLE your answer. NO CALCULATORS!

1. Graph $y=\cos x-2$.
2. Let $f(x)=9 x^{4}+\frac{8}{x}+3 \sqrt{x}+6$. Find $f^{\prime}(x)$.
3. (14 points) (The penalty for each mistake is four points.) The picture represents the graph of $y=f(x)$.
(a) Fill in the blanks:

$$
\begin{aligned}
& f(1)=_\quad \lim _{x \rightarrow 1^{+}} f(x)=_\quad \lim _{x \rightarrow 1^{-}} f(x)=-\quad \lim _{x \rightarrow 1} f(x)= \\
& f(2)=_\quad \lim _{x \rightarrow 2^{+}} f(x)=_\quad \lim _{x \rightarrow 2^{-}} f(x)=_\quad \lim _{x \rightarrow 2} f(x)= \\
& f(3)=-\quad \lim _{x \rightarrow 3^{+}} f(x)=_\quad \lim _{x \rightarrow 3^{-}} f(x)=-\quad \lim _{x \rightarrow 3} f(x)=
\end{aligned}
$$

(b) Where is f continuous?
(c) Where is f differentiable?
4. Use the DEFINITION of the DERIVATIVE to find the derivative of $f(x)=\frac{4}{x}-3$.
5. Let $f(x)=(x+6) \sqrt{x}$. Find $f^{\prime}(x)$.
6. Find the equation of the line tangent to $f(x)=10 x^{11}+12 x$ at $x=-1$.
7. Find $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$.
8. (14 points) (The penalty for each mistake is four points.) Let

$$
f(x)= \begin{cases}2-x^{2} & \text { if } 1 \leq x \\ x+1 & \text { if } 0<x<1, \text { and } \\ -x & \text { if } x \leq 0\end{cases}
$$

(a) Graph $y=f(x)$.
(b) Fill in the blanks:

$$
\begin{aligned}
& f(0)=_\quad \lim _{x \rightarrow 0^{+}} f(x)=_\quad \lim _{x \rightarrow 0^{-}} f(x)=-\quad \lim _{x \rightarrow 0} f(x)= \\
& f(1)=-\quad \lim _{x \rightarrow 1^{+}} f(x)=_\quad \lim _{x \rightarrow 1^{-}} f(x)=-\quad \lim _{x \rightarrow 1} f(x)= \\
& f(2)=\text { _ } \quad \lim _{x \rightarrow 2^{+}} f(x)=_\quad \lim _{x \rightarrow 2^{-}} f(x)=_\quad \lim _{x \rightarrow 2} f(x)=
\end{aligned}
$$

(c) Where is $f(x)$ continuous?
(d) Where is $f(x)$ differentiable?
9. (12 points -3 points for each part) Compute the following limits:
(a) $\lim _{x \rightarrow 3^{+}} \frac{x^{2}-x-6}{x-3}$
(c) $\lim _{x \rightarrow 3^{+}} \frac{x-3}{x^{2}-x-6}$
(c) $\lim _{x \rightarrow 3^{+}} \frac{x^{2}-x-6}{x+3}$
(d) $\lim _{x \rightarrow 3^{+}} \frac{x+3}{x^{2}-x-6}$

