PRINT Your Name: \qquad
Recitation Time:
Tu. Th.
There are 10 problems on 5 pages. Each problem is worth 10 points. SHOW your work. CIRCLE your answer. NO CALCULATORS! You might find the following formulas to be useful:

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \text { and } \quad \sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

1. STATE both parts of the Fundamental Theorem of Calculus.
2. Find $\int x \sin \left(x^{2}+4\right) d x$. Be sure to check your answer.
3. DEFINE the definite integral $\int_{a}^{b} f(x) d x$.
4. A 20 -foot ladder is leaning against a wall. If the bottom of the ladder is pulled along the level pavement directly away from the wall at 5 feet per second, how fast is the top of the ladder moving down the wall when the foot of the ladder is 7 feet from the wall?
5. Let $y=x \cos ^{3}\left(4 x^{2}+3\right)+\sin ^{4}(x)$. Find $\frac{d y}{d x}$.
6. Let $f(x)=8 x^{2}-x^{4}$. Where is $f(x)$ increasing, decreasing, concave up, and concave down? Find all local maximum points, local minimum points, and points of inflection of $y=f(x)$. Graph $y=f(x)$.
7. Solve the Initial Value Problem $\frac{d y}{d x}=y^{4}, y(1)=\frac{1}{2}$. Be sure to check your answer.
8. Find the area of the region between $y=2-x^{2}$ and $y=x$.
9. Consider the region bounded by $y=x^{2}, y=0, x=2$ and $x=4$. Rotate this region about the x-axis. Find the volume of the resulting solid.
10. Consider the region A, which is bounded by the x-axis, $y=x^{2}, x=0$, and $x=2$. Consider 100 rectangles, all with base $1 / 50$, which UNDER estimate the area of A. How much area is inside the 100 rectangles? (You must answer the question I asked. I expect an exact answer in closed form.)
