PRINT Your Name: $\qquad$ Recitation Time $\qquad$ Tu. Th. There are 10 problems on 6 pages. Each problem is worth 10 points. In problem 3 you MUST use the definition of the derivative. In the other problems you may use any legitimate derivative rule. SHOW your work. $C I R C L E$ your answer. NO CALCULATORS!

1. Let $y=x \sin x$. Find $d y$.
2. Let $y=\sin \left(x^{3} \cos ^{2}(2 x)+19 x^{2}\right)$. Find $\frac{d y}{d x}$.
3. Use the DEFINITION of the DERIVATIVE to find the derivative of $f(x)=\frac{2}{3 x-4}$.
4. Graph $y=2 \cos 3 x$. Mark a few points on each axis.
5. (The penalty for each mistake is five points.) Let

$$
f(x)= \begin{cases}4-x & \text { if } 2 \leq x \\ x & \text { if } 1<x<2, \text { and } \\ 4-x^{2} & \text { if } x \leq 1\end{cases}
$$

(a) Graph $y=f(x)$.
(b) Fill in the blanks:

$$
\begin{aligned}
& f(0)=\text { _ } \quad \lim _{x \rightarrow 0^{+}} f(x)=\_\quad \lim _{x \rightarrow 0^{-}} f(x)=\_\quad \lim _{x \rightarrow 0} f(x)= \\
& f(1)=\text { _ } \quad \lim _{x \rightarrow 1^{+}} f(x)=\_\quad \lim _{x \rightarrow 1^{-}} f(x)=\text { — } \quad \lim _{x \rightarrow 1} f(x)=\text { _ } \\
& f(2)=\text { _ } \quad \lim _{x \rightarrow 2^{+}} f(x)=\text { _ } \quad \lim _{x \rightarrow 2^{-}} f(x)=\text { — } \quad \lim _{x \rightarrow 2} f(x)=\text { _ }
\end{aligned}
$$

(c) Where is $f(x)$ continuous?
(d) Where is $f(x)$ differentiable?
6. The volume of a cube is growing at the rate of 6 cubic inches per second. Find the rate at which each side of the cube is growing at the instant when each side has length 10 inches.
7. (The penalty for each mistake is five points.) The picture represents the graph of $y=f(x)$.
Fill in the blanks:

$$
\begin{array}{llll}
f(2)=\_ & \lim _{x \rightarrow 2^{+}} f(x)=\_ & \lim _{x \rightarrow 2^{-}} f(x)=\_ & \lim _{x \rightarrow 2} f(x)=- \\
f(3)=- & \lim _{x \rightarrow 3^{+}} f(x)=\_ & \lim _{x \rightarrow 3^{-}} f(x)=\_ & \lim _{x \rightarrow 3} f(x)=-
\end{array}
$$

8. Let $4 x^{5} y^{3}=\sin \left(3 x^{4} y^{6}\right)$. Find $\frac{d y}{d x}$.
9. Find the equation of the line tangent to $f(x)=\cos ^{2} x$ at $x=\frac{\pi}{4}$.
10. The height of an object above the ground at time $t$ is $s(t)=-16 t^{2}+32 t+48$, where $s$ is measured in feet and $t$ is measured in seconds. What is the velocity of the object when it strikes the ground?
