Math 141, Exam 1, 2000
PRINT Your Name: \qquad
There are 8 problems on 4 pages. Problems 1 and 5 and are worth 15 points each. Problem 8 is worth 20 points. The other problems are worth 10 points each. In problem 3 you MUST use the definition of the derivative. SHOW your work. CIRCLE your answer.
NO CALCULATORS!

1. (The penalty for each mistake is four points.) Let

$$
f(x)= \begin{cases}x^{2}+2 & \text { if } x<0 \\ 3-x & \text { if } 0 \leq x \leq 1, \text { and } \\ x+1 & \text { if } 1<x\end{cases}
$$

(a) Graph $y=f(x)$.
(b) Fill in the blanks:

$$
\begin{aligned}
& f(0)=-\quad \lim _{x \rightarrow 0^{+}} f(x)=_\quad \lim _{x \rightarrow 0^{-}} f(x)=-\quad \lim _{x \rightarrow 0} f(x)= \\
& f(1)=_\quad \lim _{x \rightarrow 1^{+}} f(x)=_\quad \lim _{x \rightarrow 1^{-}} f(x)=_\quad \lim _{x \rightarrow 1} f(x)=\text { _ } \\
& f(2)=_\quad \lim _{x \rightarrow 2^{+}} f(x)=_\quad \lim _{x \rightarrow 2^{-}} f(x)=_\quad \lim _{x \rightarrow 2} f(x)=
\end{aligned}
$$

(c) Where is $f(x)$ continuous?
(d) Where is $f(x)$ differentiable?
2. Let $f(x)=3 x-1$ and $g(x)=2 x^{2}+1$.
(a) Find $(f \circ g)(x)$.
(b) Find $(g \circ f)(x)$.
3. Use the DEFINITION of the DERIVATIVE to find the derivative of $f(x)=3 \sqrt{x-4}$.
4. Graph $y=\sin 3 x$. Mark a few points on each axis.
5. (The penalty for each mistake is four points.) The picture represents the graph of $y=f(x)$.
(a) Fill in the blanks:

$$
\begin{aligned}
& f(1)=\text { _ } \quad \lim _{x \rightarrow 1^{+}} f(x)=_\quad \lim _{x \rightarrow 1^{-}} f(x)=_\quad \lim _{x \rightarrow 1} f(x)=\text { _ } \\
& f(2)=_\quad \lim _{x \rightarrow 2^{+}} f(x)=_\quad \lim _{x \rightarrow 2^{-}} f(x)=-\quad \lim _{x \rightarrow 2} f(x)= \\
& f(3)=\text { _ } \quad \lim _{x \rightarrow 3^{+}} f(x)=_\quad \lim _{x \rightarrow 3^{-}} f(x)=\text { _ } \quad \lim _{x \rightarrow 3} f(x)=
\end{aligned}
$$

(b) Where is $f(x)$ continuous?
(c) Where is $f(x)$ differentiable?
6. Find $\lim _{x \rightarrow 0} \frac{1-\cos x}{2 x^{2}}$.
7. Express $\cos (x-y)$ in terms of $\sin x, \sin y, \cos x$, and $\cos y$.
8. Compute the following limits:
(a) $\lim _{x \rightarrow 4^{+}} \frac{x+4}{x^{2}-16}$
(b) $\lim _{x \rightarrow 4^{+}} \frac{x^{2}-16}{x+4}$
(c) $\lim _{x \rightarrow 4^{+}} \frac{x^{2}-16}{x-4}$
(d) $\lim _{x \rightarrow 4^{+}} \frac{x-4}{x^{2}-16}$

