
TERENCE TAO’S ”AN EPSILON OF ROOM”
CHAPTER 3 EXERCISES

KELLER VANDEBOGERT

1. Exercise 1.3.1

We merely consider the inclusion f 7→ f , viewed as an element of

Lp(X,χ, µ), where all nonmeasurable subnull sets are given measure 0.

Linearity is trivial. Surjectivity is also immediate, since the preimage

is merely the function f itself. It remains to prove injectivity, so assume

f 7→ 0. Then, Supp(f) ⊂ A for some null set A. Integrating over A,

we find that f = 0 a.e, which proves injectivity.

2. Exercise 1.3.2

(i). Note that whenever p < 1 and |x| 6 1, |x| 6 |x|p. Then,

1 =
|f |

|f |+ |g|
+

|g|
|f |+ |g|

6
( |f |
|f |+ |g|

)p
+
( |g|
|f |+ |g|

)p
=
|f |p + |g|p

(|f |+ |g|)p

=⇒ (|f |+ |g|)p 6 |f |p + |g|p

Combining this with the triangle inequality and integrating,

||f + g||pp 6 ||f ||pp + ||g||pp
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(ii). Note first that |x| 7→ |x|p is concave for p < 1. By homogeneity,

it is of no loss of generality to assume that ||f ||p + ||g||p = 1, so that

for ||F ||p = ||G||p = 1,

f = (1− θ)F, g = θG, θ ∈ (0, 1)

So that by concavity,

|(1− θ)F + θG|p > (1− θ)|F |p + θ|G|p

Integrating yields

||f + g||p > 1 = ||f ||p + ||g||p

As asserted.

(iii). We may again assume ||f ||p + ||g||p = 1, so that for ||F ||p =

||G||p = 1,

f = (1− θ)F, g = θG, θ ∈ (0, 1)

By part (i),

||f + g||p 6
(
(1− θ)p + θp

)1/p

Since |x| 7→ |x|1/p is convex,(
(1− θ)p + θp

)1/p
6 (1− θ) · (1− θ)1−1/p + θ · θ1−1/p

= (1− θ)2−1/p + θ2−1/p

Optimizing in θ, we find that the minimum is achieved for θ = 1/2,

implying

||f + g||p 6
(1

2

)2−1/p

+
(1

2

)2−1/p

= 21/p−1

Which yields our optimal constant as 21/p−1, as asserted.
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(iv). Note that by strict convexity/concavity, equality holds if and only

if g = cf , c ∈ R. In the p = 1 case, we merely require that f and g

always have the same sign (that is, fg > 0).

3. Exercise 1.3.3

Suppose first that || · || is a norm. If B denotes our unit ball, let

x, y ∈ B, t ∈ (0, 1):

||(1− t)x+ ty|| 6 (1− t)||x||+ t||y||

6 1− t+ t = 1

So that B is convex. Conversely, we merely use contraposition. Then

there exist points x and y ∈ B such that the triangle inequality does

not hold. By homogeneity, we may assume that x = (1− t)x′, y = ty′

for x′, y′ ∈ ∂B and that ||x||+ ||y|| = 1. If we consider the line segment

through x′ and y′, we see that for θ = t,

||(1− t)x′ + ty′|| = ||x+ y|| > ||x||+ ||y|| = 1

So that B is not convex, whence the result.

4. Exercise 1.3.4

Define A0 := [1,∞], An :=
[

1
n+1

, 1
n

]
. Noting that Supp(f) =

Supp(|f |), we see:

Supp(f) =
∞⋃
n=0

|f |−1(An)

Yielding σ-finiteness.

5. Exercise 1.3.5

If ||f ||∞ = 0, f ≡ 0 trivially. Assume now that f 6≡ 0. For sufficiently

small ε > 0, consider

Sε := {x | |f(x)| > ||f ||∞ − ε}
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By the previous problem, we may assume without loss of generality

that µ(Sε) <∞. Then,

||f ||p >
(ˆ

Sε

(||f ||∞ − ε)pdµ
)1/p

= (||f ||∞ − ε)µ(Sε)
1/p

Taking the limit inferior,

lim inf
p→∞

||f ||p > ||f ||∞ − ε

As ε > 0, is arbitrary, lim infp→∞ > ||f ||∞. Now, as f ∈ Lp0 ∩ L∞,

Hölder’s inequality yields for all p > p0:

||f ||p 6 ||f ||
p−p0
p
∞ ||f ||

p0
p
p0

Letting p→∞,

lim sup
p→∞

||f ||p 6 ||f ||∞

Combining with the reverse inequality, we deduce

lim
p→∞
||f ||p = ||f ||∞

As asserted. Suppose now that f /∈ L∞. Then, for every n > 0, there

exists a set En and ε > 0 such that µ(En) > ε > 0 and f(x) > n for

every x ∈ Tε. We see:

nε1/p = nµ(En)1/p

<
( ˆ

En

|f |pdµ
)1/p

6 ||f ||p

Letting p→∞,

n < lim inf
p→∞

||f ||p

for all integers n. Hence, letting n→∞, limp→∞ ||f ||p =∞.



TERENCE TAO’S ”AN EPSILON OF ROOM” CHAPTER 3 EXERCISES 5

6. Exercise 1.3.6

Define d(f, g) := ||f − g||.

Homogeneity:

d(cf, cg) = ||cf − cg||

= |c|||f − g|| = |c|d(f, g)

Triangle Inequality:

d(f, h) = ||f − h||

6 ||f − g||+ ||g − h|| = d(f, g) + d(g, h)

Separation:

d(f, g) = 0 ⇐⇒ ||f − g|| = 0 ⇐⇒ f = g

Symmetry:

d(f, g) = ||f − g||

= ||g − f || = d(g, f)

Translation Invariance:

d(f + h, g + h) = ||(f + h)− (g + h)||

= ||f − g|| = d(f, g)

Conversely, suppose we have a translation invariant homogeneous met-

ric d : V × V → [0,∞]. Define ||f || := d(f, 0). This choice is clearly

unique, since any definition with respect to a nonzero basepoint loses

homogeneity. It remains only to show the triangle inequality:

||f + g|| = d(f + g, 0)

= d(f,−g)

6 d(f, 0) + d(0,−g)

= d(f, 0) + d(g, 0) = ||f ||+ ||g||

So that || · || defines a unique norm.
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7. Exercise 1.3.7

Assume first that V is complete. Given an absolutely convergent

series
∑∞

n=1 ||fn||, the sequence of partial sums sN is Cauchy. But

||
∞∑
n=1

fn|| 6
∞∑
n=1

||fn||

So that
∑N

n=1 fn is bounded by sN . As the sN are Cauchy, we deduce

that
∑N

n=1 fn is Cauchy. By completeness, this sequence converges, so

that
∑∞

n=1 fn exists.

Conversely, suppose that any absolutely convergent sum converges

conditionally. Let fn be a Cauchy sequence, and extract a subsequence

fnk such that

||fnk+1
− fnk || <

1

2k

for k ∈ N. Then, obviously
∑∞

k=1 ||fnk+1
− fnk || converges. By assump-

tion, this implies
∑∞

k=1 fnk+1
− fnk converges as well. But this sum in

telescoping with limit limk→∞ fnk − fn1 , so we deduce that fnk → f for

some f . It remains to show that fn → f , but as fn is Cauchy:

||fn − f || 6 ||fn − fnk ||+ ||fnk − f || → 0

as n, k →∞, so that fn → f , implying that every Cauchy sequence is

convergent, so V is complete.

8. Exercise 1.3.8

If f ∈ L∞, f is essentially bounded. Hence there exists a sequence

of simple functions increasing to f (by the simple approximation the-

orem), and density is trivial. Note that the space of simple functions

with finite measure is not dense in L∞. To see this, merely consider the

characteristic function χR. This has ||χR||∞ = 1. Choosing a sequence
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of simple functions sn with finite support, we see that for every n, sn

vanishes outside of some sufficiently large set, so that ||χR − sn||∞ = 1

for all n. Therefore, this set cannot possibly be dense.

9. Exercise 1.3.9

Enumerate the generators of our σ algebra Ω by B = {E1, E2, . . . }.

One immediately sees that

{
∑
finite

χEn | En ∈ B}

is dense in the space of characteristic function. Since Q is also dense

in the reals, we see that

S := spanQ{χEn | En ∈ B}

is dense in the space of simple functions with finite measure support,

denoted S0, which in turn is dense in Lp. But this implies

S = S0 and S0 = Lp

From which we immediately see that S is dense in Lp as well. But S

is countable, so we deduce that Lp is separable.

For p =∞, consider the family

C := {χ[−r,r] | r ∈ R+}

Then for any two distinct x, y ∈ C, ||x − y||∞ = 1. But then L∞ is

certainly not separable, as no sequence of distinct elements could ever

converge to an element of C.
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10. Exercise 1.3.10

Young’s inequality is established by concavity, and the case of equal-

ity for strict concavity will occur precisely when ap = cbq. By homo-

geneity, we may assume ||f ||p = ||g||q = c = 1. Then,

|f(x)g(x)| = 1

p
|f(x)|p +

1

q
|g(x)|q

=⇒ ||fg||1 = 1 = ||f ||p · ||g||q

Yielding the result.

11. Exercise 1.3.11

Let f ∈ Lp, q < p. Then

||f ||q 6
(ˆ

E

1dµ
)1/q−1/p( ˆ

E

|f |pdµ
)1/p

= µ(E)1/q−1/p||f ||p

So f ∈ Lq. By the previous problem, equality occurs when f is a

constant.

12. Exercise 1.3.12

Since q > p, we may apply the reverse H ólder inequality to find

||f ||p > ||f ||qµ(E)1/p−1/q

By assumption, µ(E) > m for every E in our σ-algebra, so we rearrange

the above inequality to find

||f ||q 6 m1/q−1/p||f ||p

So that f ∈ Lq if f ∈ Lp. Equality holds again for f ≡ const.
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13. Exercise 1.3.13

We have:

ˆ
X

|f(x)|pdµ =

ˆ
X

|f |pθ|f |(1−θ)pd]mu

6
(ˆ

X

(
|f |pθ

) p1
pθ dµ

) pθ
p1 ·
(ˆ

X

(
|f |(1−θ)p

) p0
(1−θ)pdµ

) p(1−θ)
p0

= ||f ||pθp1 ||f ||
p(1−θ)
p0

Taking pth roots in the above,

||f ||p 6 ||f ||θp1||f ||
1−θ
p0

whence the result.

14. Exercise 1.3.14

By Hölder’s,

||f ||pp 6 µ(E)1−p/p0||f ||pp0
so that

lim sup
p→0

||f ||pp 6 µ(E)

For the reverse inequality,

lim inf
p→0

ˆ
X

|f |pdµ > lim inf
p→0

ˆ
E

|f |pdµ

>
ˆ
E

lim inf
p→0

|f |pdµ (Fatou’s)

=

ˆ
E

dµ = µ(E)

Hence we conclude that lim
p→0
||f ||pp = µ(E).


