TERENCE TAO’S AN EPSILON OF ROOM”
CHAPTER 3 EXERCISES

KELLER VANDEBOGERT

1. EXERCISE 1.3.1

We merely consider the inclusion f +— f, viewed as an element of
LP(X, x, i), where all nonmeasurable subnull sets are given measure 0.
Linearity is trivial. Surjectivity is also immediate, since the preimage
is merely the function f itself. It remains to prove injectivity, so assume
f + 0. Then, Supp(f) C A for some null set A. Integrating over A,

we find that f = 0 a.e, which proves injectivity.

2. EXERCISE 1.3.2

(i). Note that whenever p < 1 and |z| < 1, |z| < |z|P. Then,

U ]
e

Nl
<(Fem) * (em)
1P+ lgP

(ST + gl
= (If1+1gD)” < 1fIP + 19l

Combining this with the triangle inequality and integrating,

1F =+ glly < A1 + gl
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(ii). Note first that |z| — |z|P is concave for p < 1. By homogeneity,
it is of no loss of generality to assume that ||f||, + ||g]|, = 1, so that

for [[F'l[, = [|GI], = 1,
f=0-0F, ¢g=0G, 6¢€(0,1)
So that by concavity,
(1—0)F +0G|P > (1 —0)|F|P +0|G|P
Integrating yields

I +ally = 1= [[fll, + llgll»

As asserted.

(iii). We may again assume ||f||, + ||g||, = 1, so that for [|F||, =
1G], =1,

F=(1—0F g¢=0G, 60¢c/(0,1)
By part (i),
1+ gll, < (1= 0+ 0m)""
Since |z| — |z|'/? is convex,
(1=0P+6")"" < (1—0)-(1—0) P00
=(1- 9)2—1/p 492 r
Optimizing in #, we find that the minimum is achieved for § = 1/2,

implying

f o 1 2—-1/p 1 2—-1/p
| +9Hp\<2) +<2>

— 21/p—1

Which yields our optimal constant as 217~ as asserted.
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(iv). Note that by strict convexity /concavity, equality holds if and only
if g=-cf, c € R. In the p = 1 case, we merely require that f and g

always have the same sign (that is, fg > 0).

3. EXERCISE 1.3.3

Suppose first that || - || is a norm. If B denotes our unit ball, let

z, y € B, te(0,1):
11 =)z +ty|| < (1 = O)]=|| + t]]yl]

<l—t+t=1
So that B is convex. Conversely, we merely use contraposition. Then
there exist points x and y € B such that the triangle inequality does
not hold. By homogeneity, we may assume that x = (1 — t)2’, y = ty/
for a/, y' € OB and that ||z||+||y|| = 1. If we consider the line segment
through 2’ and ¢/, we see that for 6 = t,

11 =0)a" + /|| = [l +yll > |l=[] + [lyl] =1

So that B is not convex, whence the result.

4. EXERCISE 1.3.4

Define Ay = [1,00], A, = [L l] Noting that Supp(f) =

n+1’n

Supp(| f]), we see:
Supp(f) = [J1£17(Ax)
n=0
Yielding o-finiteness.

5. EXERCISE 1.3.5

If || flloo = 0, f = 0 trivially. Assume now that f # 0. For sufficiently

small € > 0, consider

Sei= Az | [f(@)] = [[fll — €}
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By the previous problem, we may assume without loss of generality

that p(S) < co. Then,

1/p
151> (11l )
= (1l — (S

Taking the limit inferior,

limianpr = HfHoo — €
p—r00

As € > 0, is arbitrary, liminf, ... > ||f||c. Now, as f € LP° N L,

Holder’s inequality yields for all p > pg:

pP—Po
p

Po
Al < ALf 1" 1111

Letting p — oo,
limsup || f||, < |1fle
p—>00

Combining with the reverse inequality, we deduce

Jim [[ £l = 11/ll

As asserted. Suppose now that f ¢ L. Then, for every n > 0, there
exists a set E, and € > 0 such that u(E,) > € > 0 and f(x) > n for

every x € T.. We see:

nel/? = nu(En)l/p

< ([ ra) " <,

Letting p — oo,
n < liminf || f||,
p—00

for all integers n. Hence, letting n — oo, lim,_, || f||, = 0.
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6. EXERCISE 1.3.6

Define d(f,g) == ||f — g]|-

Homogeneity:
d(cf,cg) = llef — el

= lelllf = gll = Icld(f, )
Triangle Inequality:
d(f,h) = |[f = hll
<|If =gl +1lg = hll = d(f,g9) +d(g, )

Separation:
d(f,9)=0 <= |[|f—9gll=0 <= [f=yg
Symmetry:
d(f.9) =/ —gll
= llg = fll = d(g, f)

Translation Invariance:
d(f +h,g+h)=|(f+h)—(g+h)

=|[f —gll =d(f,9)

5

Conversely, suppose we have a translation invariant homogeneous met-

ricd: V xV — [0,00]. Define ||f|| := d(f,0). This choice is clearly

unique, since any definition with respect to a nonzero basepoint loses

homogeneity. It remains only to show the triangle inequality:
|f +gll = d(f + 9,0)
=d(f,—g)
< d(f,0) +d(0, —g)
(

= d(f,0) +d(g,0) = || f][ + [l

So that || - || defines a unique norm.
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7. EXERCISE 1.3.7

Assume first that V' is complete. Given an absolutely convergent

series > || fx]], the sequence of partial sums sy is Cauchy. But

IDRAIESNIA]
n=1 n=1

So that ij:l fn is bounded by sy. As the sy are Cauchy, we deduce
that 25:1 fn is Cauchy. By completeness, this sequence converges, so
that > 7 | f, exists.

Conversely, suppose that any absolutely convergent sum converges

conditionally. Let f,, be a Cauchy sequence, and extract a subsequence

fn, such that
1
||fnk+1 - fnkH < ?
for k € N. Then, obviously Y 77 || fu.,, — fn.|| converges. By assump-
tion, this implies Y 77 fo,., — fn, converges as well. But this sum in
telescoping with limit limy_,o fp, — fn,, so we deduce that f,, — f for

some f. It remains to show that f, — f, but as f, is Cauchy:

Lo = FIN< {1 fo = S+ [ fae = Il =0

as n, k — oo, so that f,, — f, implying that every Cauchy sequence is

convergent, so V' is complete.

8. EXERCISE 1.3.8

If f e L™, f is essentially bounded. Hence there exists a sequence
of simple functions increasing to f (by the simple approximation the-
orem), and density is trivial. Note that the space of simple functions
with finite measure is not dense in L>°. To see this, merely consider the

characteristic function yg. This has ||xgr||oc = 1. Choosing a sequence
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of simple functions s,, with finite support, we see that for every n, s,
vanishes outside of some sufficiently large set, so that ||[xg — sn||ee =1

for all n. Therefore, this set cannot possibly be dense.

9. EXERCISE 1.3.9

Enumerate the generators of our o algebra Q by B = {E}, Es, ... }.

One immediately sees that

(> ve | B.eB)

finite

is dense in the space of characteristic function. Since Q) is also dense

in the reals, we see that
S = spang{xg, | E. € B}

is dense in the space of simple functions with finite measure support,

denoted Sy, which in turn is dense in LP. But this implies
S=S5, and Sy=1LP

From which we immediately see that S is dense in L? as well. But S
is countable, so we deduce that L? is separable.

For p = oo, consider the family
C .= {X[—r,r] ’ re R+}

Then for any two distinct z, y € C, ||z — y||oc = 1. But then L™ is
certainly not separable, as no sequence of distinct elements could ever

converge to an element of C.



8 KELLER VANDEBOGERT

10. EXERCISE 1.3.10

Young’s inequality is established by concavity, and the case of equal-
ity for strict concavity will occur precisely when a? = ¢b?. By homo-

geneity, we may assume ||f||, = ||g||; = ¢ = 1. Then,

uumunzgﬂmw+aaww
— fgll =1 = [Ifll, - lglls

Yielding the result.

11. EXERCISE 1.3.11
Let f € LP, g < p. Then
1/q—1/p » 1/p
1< ([ 1dn)™ ([ 1)
E E

= p(B) VP £l

So f € LY. By the previous problem, equality occurs when f is a

constant.

12. EXERCISE 1.3.12

Since ¢ > p, we may apply the reverse H élder inequality to find

1£1lp = [1£[lqu(E)Hr=

By assumption, u(E) > m for every E in our o-algebra, so we rearrange

the above inequality to find

1 £llg < m/T=H 2] £,

So that f € L?if f € LP. Equality holds again for f = const.
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13. EXERCISE 1.3.13

We have:

/ F@)Pdy = / P10
p(1—-0)

< </ (,f,w)pedu) ,</X(|f’(1e)p)(1’i%)pdu> P0

= I FIEILF I
Taking pth roots in the above,

1 F1l < 1FI18 11 £1150

whence the result.

14. EXERCISE 1.3.14

By Holder’s,
FIE < p(E) PP FlIn
so that

hmsup AIp < n(E)

For the reverse inequality,

hmlnf/ |f\pdu>hm1nf/ | f1Pdu

>/liminf|f|pd,u (Fatou’s)
g p—=0

= [ du= i)

Hence we conclude that lim || f|[} = pu(E).
p—0



