
TERENCE TAO’S ”AN EPSILON OF ROOM”
CHAPTER 2 EXERCISES

KELLER VANDEBOGERT

1. Exercise 1.2.1

Let sn be an increasing sequence of simple functions tending to g.

Then, ˆ
X

sndmf =

ˆ
X

∑
i

aiχXi
dmf

=
∑
i

ai

ˆ
Xi

fdm

=
∑
i

ai

ˆ
X

χXi
fdm

=

ˆ
X

snfdm

Letting n→∞, the monotone convergence theorem yieldsˆ
X

gdmf =

ˆ
X

gfdm

2. Exercise 1.2.2

If f = g a.e, then,ˆ
X

(f − g)dm = 0 =⇒
ˆ
X

fdm =

ˆ
X

gdm

So that mf = mg. Conversely, suppose mf = mg. By σ-finiteness, it is

of no loss of generality to assume m(X) <∞. If f 6= g a.e, we can find

a set of positive measure such that f − g > ε > 0, in which case we
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would see that mf−mg would also have to be positive, a contradiction.

The result follows.

Choose any singleton set X with the discrete topology, and define

µ(X) =∞ and µ(∅) = 0. Given any two distint f, g : X → Y , we see

that mf = mg =∞, but f and g are not equal.

3. Exercise 1.2.3

Define dµ
dm

(x) := f(x). Let ε > 0, and choose h small enough such

that |f(x+ h)− f(x)| < ε. Consider then:

|µ([x, x+ h]− f(x)h| = |
ˆ
[x,x+h]

dµ− f(x)m([x, x+ h])|

= |
ˆ
[x,x+h]

f(y)dm(y)−
ˆ
[x,x+h]

f(x)dm(y)|

6
ˆ
[x,x+h]

|f(y)− f(x)|dm(y)

< εh→ 0

As ε→ 0. Hence, by definition of derivative, f(x) = d
dx
µ([0, x]).

4. Exercise 1.2.4

LetX be at most countable with measure µ on the discrete σ-algebra.

Using the fact that
´
{x} d# = 1, choose A ⊂ X arbitrary:

ˆ
A

dµ =

ˆ
A

ˆ
{x}

d#dµ

=

ˆ
{x}

ˆ
A

dµd# (Fubini’s)

=

ˆ
{x}

∑
x∈A

ˆ
{x}

dµd#

=
∑
x∈A

ˆ
{x}

ˆ
{x}

dµd#
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From which we immediately deduce that dµ
d#

(x) = µ({x}), so our de-

rivative exists.

5. Exercise 1.2.5

Let µ be a signed measure. Decompose X = X+∪X− as asserted by

the Hahn decomposition theorem. Define µ+ := µ|X+ , µ− := −µ|X− .

Clearly µ = µ+ − µ−, it remains to prove uniqueness. Suppose that

two such decompositions exists, that is,

µ+ − µ− = η+ − η−

for some other measures η+, η−. By evaluating on all subsets on X+

and X−, mutual singularity guarantees that µ+ = η+ and µ− = η−, so

uniqueness is immediate.

6. Exercise 1.2.6

Suppose for sake of contradiction there exists some other measure η

such that

−|µ| < −η 6 µ 6 η < |µ|

Evaluating on X+ and X−, respectively, we find that

µ(X+) 6 η(X+) < µ+(X+) = µ(X+)

−µ(X−) = −µ−(X−) < −η(X−) 6 µ(X−)

These contradictions imply that no such measure can exist.

7. Exercise 1.2.7

Since µ is bounded by |µ|, µ being infinite implies that |µ| is infinite.

Conversely, if µ is infinite, then either µ− or µ+ is infinite, in which

case µ must also be infinite.
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Taking contrapositives yields |µ| <∞ ⇐⇒ µ−, µ+ <∞.

8. Exercise 1.2.8

Suppose that µ is σ-finite. Choose a sequence of finite measure

subsets En increasing to X, so that there exists fn such that
´⋃n

i=1
dµ =´⋃n

i=1
fndm + µns. Letting n → ∞, suppose n → f . The monotone

convergence theorem yieldsˆ
X

dµ =

ˆ
X

fdm+ µs

We see that µs ⊥ m, since µns ⊥ m for every n, whence the result

follows.

9. Exercise 1.2.9

Define D := {x ∈ X | µ({x}) > 0}. By σ-finiteness, this set is

countable, so we can enumerate D = {x1, x2, . . . }. If D is empty, we

can take µpp ≡ 0 and employ the Radon-Nikodym-Lebesgue theorem.

Assume now that D 6= ∅, and define

µpp :=
∑
n

µ({xn})χ{xn}

and set µc = µ− µpp. By construction,

µc({x}) = µ({x})− µpp({x})

= µ({x})− µ({x}) = 0

So that µc is continuous. Now, by the Radon-Nikodym-Lebesgue the-

orem, there exists some f ∈ L1(X,m) such that µc = mf + µsc. Note

that mf is a continuous measure, and we deduce that µsc must be

continuous with mf ⊥ µsc. Hólder’s inequality immediately gives that

µf � m, so we can set mf := µac, and deduce that

µ = µac + µsc + µpp
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As desired.

10. Exercise 1.2.10

Assume first that the function f(x) := µ([0, x]) is continuous. In

view of the Hahn decomposition theorem, we may assume that µ is

unsigned. Since {x} ⊂ [x, x+ h] for every h > 0,

µ({x}) 6 µ([x, x+ h])

for all h. Letting h→ 0, we find that µ({x}) = 0.

Conversely, argue by contraposition. If µ([0, x]0 is not continuous at

some x ∈ X, we can find ε > 0 such that

µ([x, x+ h]) > ε

for all h > 0. Discretizing,

lim
n→∞

µ([x, x+ 1/n]) = µ({x}) > ε > 0

so that µ({x}) > 0 for some x ∈ X.


