REAL ANALYSIS HOMEWORK 6

KELLER VANDEBOGERT

1. Problem 1

(a). We have already shown that for measurable f, $f^{-1}([-\infty, c])$ and $f^{-1}([c, \infty])$ are measurable. Then, merely note that $\{c\} = [-\infty, c] \cap [c, \infty]$ to find:

$$f^{-1}(c) = f^{-1}([-\infty, c] \cap [c, \infty]) = f^{-1}([-\infty, c]) \cap f^{-1}([c, \infty])$$

Then, noting that $\{x \in E : f(x) = c\} = f^{-1}(c)$, we see that this is the intersection of two measurable sets and is hence measurable.

(b). Consider $g: [0,1] \to [-1,1]$ with g(x) = x for $x \in Y$, g(x) = -x for $x \notin Y$, where Y is some nonmeasurable subset of [0,1] (we proved in class that such a set always exists). Explicitly, we could also say $g(x) = x \cdot (\mathbf{1}_Y - \mathbf{1}_{[-1,1]\setminus Y}).$

Then note that this is clearly a bijection and hence the preimage of every singleton is again a singleton in [0,1]. But the measure of a singleton set is 0, so that $\{x \in [0,1] : g(x) = c\}$ is always measurable. However, $\{x \in [0,1] : g(x) \ge 0\}$ is precisely Y, which is nonmeasurable. Thus, g is not a measurable function and we are done.

Date: September 3, 2017.

KELLER VANDEBOGERT

2. Problem 2

Suppose f is measurable, and following the hint define

 $\mathscr{A} := \{ E \subset \mathbb{R} : f^{-1}(E) \text{ measurable} \}$

Since f is measurable, it is clear that $\mathbb{R} \in \mathscr{A}$, and similarly for \emptyset .

Suppose that $A \in \mathscr{A}$. Then, consider the complement $\mathbb{R}\backslash A$: we see that $f^{-1}(\mathbb{R}\backslash A) = f^{-1}(\mathbb{R})\backslash f^{-1}(A)$. Since $f^{-1}(A)$ is measurable by assumption and the collection of measurable sets is a σ algebra, we see that $(f^{-1}(A))^c$ is measurable and hence $A^c \in \mathscr{A}$.

Finally, given a countable collection $A_i \in \mathscr{A}$, $f^{-1}(\bigcup_i A_i) = \bigcup_i f^{-1}(A_i)$ is measurable as the countable union of measurable sets, again since the collection of measurable sets forms a σ algebra. Hence $\bigcup_i A_i \in \mathscr{A}$, and we have shown that indeed \mathscr{A} is also a σ algebra.

Using this, it suffices to show that \mathscr{A} contains all open sets. But this is clear: by definition of measurability, $f^{((\infty, b))} \cap f^{-1}(a, \infty)) = f^{-1}((a, b)) \in \mathscr{A}$, and hence \mathscr{A} is a σ algebra containing every open set. But by definition, the Borel σ algebra is the smallest σ algebra containing every open set, and hence \mathscr{A} contains the Borel σ algebra.

This then implies that $B \in \mathscr{A}$ for every Borel set B. In other words, $f^{-1}(B)$ is measurable for every Borel set B, which was to be proved.

3. Problem 3

Suppose g = f a.e on E where f is measurable on E. Define $A := \{x \in E : f \neq g\}$. Then, m(A) = 0 by hypothesis and hence A is a measurable set. This of course then means that A^c is measurable since $E \setminus A$ is the difference of two measurable sets. On A^c however, $f \equiv g$ and hence g is certainly measurable since f is. Similarly, $g|_A$

is measurable since $f^{-1}|_A(B) \subset A$, and since A has measure 0, the preimage does as well and is hence measurable. Then, since $g|_A$ and $g|_{A^c}$ are both measurable, we conclude that $g|_E = g$ is measurable as well.

4. Problem 4

If f is measurable, then we have proved that |f| is also a measurable function. Note that $x \mapsto x^p$ is continuous for $x \ge 0$, p > 0. Since the composition $\phi \circ g$ is continuous for g measurable and ϕ continuous, we see that $|f| \mapsto |f|^p$ is the continuous image of a measurable function, hence measurable.