REAL ANALYSIS HOMEWORK 10

KELLER VANDEBOGERT

1. Problem 1

(a). Note that f = g a.e on E is equivalent to saying $\int_E |f - g| = 0$. Hence, if f = g a.e and g = h a.e,

$$\int_E |f-h| \leqslant \int_E |f-g| + \int_E |g-h| = 0$$
 So that $\int_E |f-h| = 0$ as well, showing that $f = h$ a.e.

(b). Suppose $f_1 = f_2$ and $g_1 = g_2$ a.e on E. Then:

$$\int_{E} |f_1 + g_1 - (f_2 + g_2)| \leq \int_{E} |f_1 - f_2| + \int_{E} |g_1 - g_2| = 0$$

hat $f_1 + g_1 = f_2 + g_2$ a.e.

So that $f_1 + g_1 = f_2 + g_2$ a.e.

(c). Suppose that $|f| \leq M$ and $|g| \leq N$ a.e on E. Then,

$$\int_{E} (M+N) - |f+g| \ge \int_{E} M - |f| + \int_{E} N - |f| \ge 0$$

And hence $|f + g| \leq M + N$ a.e.

2. Problem 2

The case $p_1 = 1, p_2 = \infty$ follows easily since

$$\int_E |f| dx \leqslant ||f||_\infty m(E) < \infty$$

Date: September 3, 2017.

Hence, if $f \in L^{\infty}(E)$, we see that its L^1 norm must also be bounded. For the remaining case, find t such that $1/p_1 - 1/p_2 = 1/t$. Then, $1/p_2 + 1/t = 1/p_1$, and we can apply the general Hölder's inequality:

$$||f||_{p_1} \leq ||f||_{p_2} (m(E))^{1/t}$$

Since $m(E) < \infty$, we see that $f \in L^{p_2}(E)$ implies $f \in L^{p_1}(E)$, which was to be proved.

3. Problem 3

(a). Let $\epsilon > 0$ and choose $A \subset E$ such that $m(A) < \epsilon/M$. By Hölder's inequality:

$$\int_{A} |f| dx \leqslant ||f||_{p} m(A) < \epsilon$$

So this is a uniformly integrable collection.

(b). Let E = [0, 1] and consider the family $\{f_n := n \mathbf{1}_{[0, 1/n]}\}$. Certainly this collection is bounded in L^1 norm, as $\int_E f_n = 1$ for all n. However, given $1 > \epsilon > 0$ we can find N such that $1/N < \delta$ for any positive δ . Then we see that $[0, \delta]$ has measure δ , but $\int_{[0, \delta]} f_n = 1 > \epsilon$ for all $n \ge N$. Thus this collection cannot possibly be uniformly integrable.

4. Problem 4

Let $x_n \to x$. Then we can find N such that for all n > N, $||x_n - x|| < \epsilon/2$. Then, let m, n > N. By the triangle inequality:

$$||x_n - x_m|| \leq ||x_n - x|| + ||x - x_m|| < \epsilon$$

And hence x_n is Cauchy.